Search results
Results from the WOW.Com Content Network
In mathematics, every analytic function can be used for defining a matrix function that maps square matrices with complex entries to square matrices of the same size.. This is used for defining the exponential of a matrix, which is involved in the closed-form solution of systems of linear differential equations.
The function e (−1/x 2) is not analytic at x = 0: the Taylor series is identically 0, although the function is not. If f ( x ) is given by a convergent power series in an open disk centred at b in the complex plane (or an interval in the real line), it is said to be analytic in this region.
For any real numbers (scalars) x and y we know that the exponential function satisfies e x+y = e x e y. The same is true for commuting matrices. If matrices X and Y commute (meaning that XY = YX), then, + =. However, for matrices that do not commute the above equality does not necessarily hold.
Rule of Sarrus: The determinant of the three columns on the left is the sum of the products along the down-right diagonals minus the sum of the products along the up-right diagonals. In matrix theory , the rule of Sarrus is a mnemonic device for computing the determinant of a 3 × 3 {\displaystyle 3\times 3} matrix named after the French ...
A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.
The original proof is based on the Taylor series expansions of the exponential function e z (where z is a complex number) and of sin x and cos x for real numbers x . In fact, the same proof shows that Euler's formula is even valid for all complex numbers x .
In this setting, e 0 = 1, and e x is invertible with inverse e −x for any x in B. If xy = yx, then e x + y = e x e y, but this identity can fail for noncommuting x and y. Some alternative definitions lead to the same function. For instance, e x can be defined as (+).
For given x, Padé approximants can be computed by Wynn's epsilon algorithm [2] and also other sequence transformations [3] from the partial sums = + + + + of the Taylor series of f, i.e., we have = ()!. f can also be a formal power series, and, hence, Padé approximants can also be applied to the summation of divergent series.