enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Protein primary structure - Wikipedia

    en.wikipedia.org/wiki/Protein_primary_structure

    Protein primary structure is the linear sequence of amino acids in a peptide or protein. [1] By convention, the primary structure of a protein is reported starting from the amino-terminal (N) end to the carboxyl-terminal (C) end. Protein biosynthesis is most commonly performed by ribosomes in cells. Peptides can also be synthesized in the ...

  3. Protein metabolism - Wikipedia

    en.wikipedia.org/wiki/Protein_metabolism

    Protein anabolism is the process by which proteins are formed from amino acids. It relies on five processes: amino acid synthesis, transcription, translation, post translational modifications, and protein folding. Proteins are made from amino acids. In humans, some amino acids can be synthesized using already existing intermediates. These amino ...

  4. Protein structure - Wikipedia

    en.wikipedia.org/wiki/Protein_structure

    Protein structures range in size from tens to several thousand amino acids. [2] By physical size, proteins are classified as nanoparticles, between 1–100 nm. Very large protein complexes can be formed from protein subunits. For example, many thousands of actin molecules assemble into a microfilament.

  5. DNA and RNA codon tables - Wikipedia

    en.wikipedia.org/wiki/DNA_and_RNA_codon_tables

    A codon table can be used to translate a genetic code into a sequence of amino acids. [1] [2] The standard genetic code is traditionally represented as an RNA codon table, because when proteins are made in a cell by ribosomes, it is messenger RNA (mRNA) that directs protein synthesis. [2] [3] The mRNA sequence is determined by the sequence of ...

  6. Protein secondary structure - Wikipedia

    en.wikipedia.org/wiki/Protein_secondary_structure

    The rough secondary-structure content of a biopolymer (e.g., "this protein is 40% α-helix and 20% β-sheet.") can be estimated spectroscopically. [15] For proteins, a common method is far-ultraviolet (far-UV, 170–250 nm) circular dichroism. A pronounced double minimum at 208 and 222 nm indicate α-helical structure, whereas a single minimum ...

  7. Amino acid - Wikipedia

    en.wikipedia.org/wiki/Amino_acid

    The common natural forms of amino acids have a zwitterionic structure, with −NH + 3 (−NH + 2 − in the case of proline) and −CO − 2 functional groups attached to the same C atom, and are thus α-amino acids, and are the only ones found in proteins during translation in the ribosome.

  8. Protein structure prediction - Wikipedia

    en.wikipedia.org/wiki/Protein_structure_prediction

    The α-helix is the most abundant type of secondary structure in proteins. The α-helix has 3.6 amino acids per turn with an H-bond formed between every fourth residue; the average length is 10 amino acids (3 turns) or 10 Å but varies from 5 to 40 (1.5 to 11 turns). The alignment of the H-bonds creates a dipole moment for the helix with a ...

  9. Active site - Wikipedia

    en.wikipedia.org/wiki/Active_site

    It usually consists of three to four amino acids, while other amino acids within the protein are required to maintain the tertiary structure of the enzymes. [2] Each active site is evolved to be optimised to bind a particular substrate and catalyse a particular reaction, resulting in high specificity. This specificity is determined by the ...