enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. Here, is taken to have the value {} denotes the fractional part of () is a Bernoulli polynomial.

  3. Ramanujan summation - Wikipedia

    en.wikipedia.org/wiki/Ramanujan_summation

    Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series.Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.

  4. 1/2 + 1/4 + 1/8 + 1/16 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1/2_%2B_1/4_%2B_1/8_%2B_1/...

    In mathematics, the infinite series ⁠ 1 / 2 ⁠ + ⁠ 1 / 4 ⁠ + ⁠ 1 / 8 ⁠ + ⁠ 1 / 16 ⁠ + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation, this may be expressed as

  5. Grandi's series - Wikipedia

    en.wikipedia.org/wiki/Grandi's_series

    In modern mathematics, the sum of an infinite series is defined to be the limit of the sequence of its partial sums, if it exists. The sequence of partial sums of Grandi's series is 1, 0, 1, 0, ..., which clearly does not approach any number (although it does have two accumulation points at 0 and 1). Therefore, Grandi's series is divergent

  6. Summation - Wikipedia

    en.wikipedia.org/wiki/Summation

    Summations of infinite sequences are called series. They involve the concept of limit, and are not considered in this article. The summation of an explicit sequence is denoted as a succession of additions. For example, summation of [1, 2, 4, 2] is denoted 1 + 2 + 4 + 2, and results in 9, that is, 1 + 2 + 4 + 2 = 9.

  7. Basel problem - Wikipedia

    en.wikipedia.org/wiki/Basel_problem

    The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares.It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [1] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. [2]

  8. Alternating series - Wikipedia

    en.wikipedia.org/wiki/Alternating_series

    The geometric series ⁠ 1 / 2 ⁠ − ⁠ 1 / 4 ⁠ + ⁠ 1 / 8 ⁠ − ⁠ 1 / 16 ⁠ + ⋯ sums to ⁠ 1 / 3 ⁠.. The alternating harmonic series has a finite sum but the harmonic series does not.

  9. Residue theorem - Wikipedia

    en.wikipedia.org/wiki/Residue_theorem

    The fact that π cot(πz) has simple poles with residue 1 at each integer can be used to compute the sum = (). Consider, for example, f(z) = z −2. Let Γ N be the rectangle that is the boundary of [−N − ⁠ 1 / 2 ⁠, N + ⁠ 1 / 2 ⁠] 2 with positive orientation, with an integer N. By the residue formula,