enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Young's modulus - Wikipedia

    en.wikipedia.org/wiki/Young's_modulus

    Young's modulus is defined as the ratio of the stress (force per unit area) applied to the object and the resulting axial strain (displacement or deformation) in the linear elastic region of the material. Although Young's modulus is named after the 19th-century British scientist Thomas Young, the concept was developed in 1727 by Leonhard Euler.

  3. Elastic properties of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Elastic_properties_of_the...

    Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress. They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength .

  4. Specific modulus - Wikipedia

    en.wikipedia.org/wiki/Specific_modulus

    Young's modulus Density (g/cm 3) Young's modulus per density; specific stiffness (10 6 m 2 s −2) Young's modulus per density squared (10 3 m 5 kg −1 s −2) Young's modulus per density cubed (m 8 kg −2 s −2) Reference Latex foam, low density, 10% compression [4] 5.9 × 10 ^ −7: 0.06: 9.83 × 10 ^ −6: 0.000164: 0.00273: Reversible ...

  5. Theoretical strength of a solid - Wikipedia

    en.wikipedia.org/wiki/Theoretical_strength_of_a...

    E is the Young's Modulus of the solid. is the strain experienced by the solid. x is the displacement. The strain can be related to the displacement x by = /, and is the equilibrium inter-atomic spacing.

  6. Elastic modulus - Wikipedia

    en.wikipedia.org/wiki/Elastic_modulus

    The bulk modulus is an extension of Young's modulus to three dimensions. Flexural modulus ( E flex ) describes the object's tendency to flex when acted upon by a moment . Two other elastic moduli are Lamé's first parameter , λ, and P-wave modulus , M , as used in table of modulus comparisons given below references.

  7. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    Volume, modulus of elasticity, distribution of forces, and yield strength affect the impact strength of a material. In order for a material or object to have a high impact strength, the stresses must be distributed evenly throughout the object. It also must have a large volume with a low modulus of elasticity and a high material yield strength. [7]

  8. Lamé parameters - Wikipedia

    en.wikipedia.org/wiki/Lamé_parameters

    Relations for other moduli are found in the (λ, G) row of the conversions table at the end of this article. Although the shear modulus, μ, must be positive, the Lamé's first parameter, λ, can be negative, in principle; however, for most materials it is also positive. The parameters are named after Gabriel Lamé.

  9. Bulk modulus - Wikipedia

    en.wikipedia.org/wiki/Bulk_modulus

    Influences of selected glass component additions on the bulk modulus of a specific base glass. [6] A material with a bulk modulus of 35 GPa loses one percent of its volume when subjected to an external pressure of 0.35 GPa (~ 3500 bar) (assumed constant or weakly pressure dependent bulk modulus).