Search results
Results from the WOW.Com Content Network
Since an entropy is a state function, the entropy change of the system for an irreversible path is the same as for a reversible path between the same two states. [22] However, the heat transferred to or from the surroundings is different as well as its entropy change. We can calculate the change of entropy only by integrating the above formula.
However, there is a broad class [18] of systems that manifest entropy-driven order, in which phases with organization or structural regularity, e.g. crystals, have higher entropy than structurally disordered (e.g. fluid) phases under the same thermodynamic conditions. In these systems phases that would be labeled as disordered by virtue of ...
In thermochemistry, a thermochemical equation is a balanced chemical equation that represents the energy changes from a system to its surroundings. One such equation involves the enthalpy change, which is denoted with Δ H {\displaystyle \Delta H} In variable form, a thermochemical equation would appear similar to the following:
The entropy of the surrounding room decreases less than the entropy of the ice and water increases: the room temperature of 298 K is larger than 273 K and therefore the ratio, (entropy change), of δQ / 298 K for the surroundings is smaller than the ratio (entropy change), of δQ / 273 K for the ice and water system. This is ...
This is possible provided the total entropy change of the system plus the surroundings is positive as required by the second law: ΔS tot = ΔS + ΔS R > 0. For the three examples given above: 1) Heat can be transferred from a region of lower temperature to a higher temperature in a refrigerator or in a heat pump. These machines must provide ...
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".
In solution chemistry and biochemistry, the Gibbs free energy decrease (∂G/∂ξ, in molar units, denoted cryptically by ΔG) is commonly used as a surrogate for (−T times) the global entropy produced by spontaneous chemical reactions in situations where no work is being done; or at least no "useful" work; i.e., other than perhaps ± P dV.
The significance of the Nernst heat theorem is that it was later used by Max Planck to give the third law of thermodynamics, which is that the entropy of all pure, perfectly crystalline homogeneous materials in complete internal equilibrium is 0 at absolute zero.