Search results
Results from the WOW.Com Content Network
The quadrangles appear as rectangles on maps based on a cylindrical map projection, [1] but their actual shapes on the curved surface of Mars are more complicated Saccheri quadrilaterals. The sixteen equatorial quadrangles are the smallest, with surface areas of 4,500,000 square kilometres (1,700,000 sq mi) each, while the twelve mid-latitude ...
Mars without (on left) and with a global dust storm in July 2001 (on right), including different visible water ice cloud covers, as seen by the Hubble Space Telescope. Mars has the largest dust storms in the Solar System, reaching speeds of over 160 km/h (100 mph). These can vary from a storm over a small area, to gigantic storms that cover the ...
Mars has an orbit with a semimajor axis of 1.524 astronomical units (228 million km) (12.673 light minutes), and an eccentricity of 0.0934. [ 1 ] [ 2 ] The planet orbits the Sun in 687 days [ 3 ] and travels 9.55 AU in doing so, [ 4 ] making the average orbital speed 24 km/s.
The pit entrances measure from 100 to 252 metres (328 to 827 ft) wide and they are thought to be at least 73 to 96 metres (240 to 315 ft) deep. See image below: the pits have been informally named (A) Dena, (B) Chloe, (C) Wendy, (D) Annie, (E) Abby (left) and Nikki, and (F) Jeanne. Dena's floor was observed and found to be 130 m deep. [90]
10 3 M Sun: 3 x 10 3 km ≈ R Mars: Stellar black hole: 10 M Sun: 30 km Micro black hole: up to M Moon: up to 0.1 mm
The composition of Mars covers the branch of the geology of Mars that describes the make-up of the planet Mars. " Hottah " rock outcrop on Mars – ancient streambed [ 1 ] [ 2 ] [ 3 ] viewed by the Curiosity Rover (September 12, 2012, white balanced ) ( raw , close-up , 3-D version ).
The Tharsis region of Mars also has the solar system's largest canyon system, Valles Marineris or the Mariner Valley, which is 4,000 km long and 7 km deep. Mars is also scarred by countless impact craters. The largest of these is the Hellas impact basin. See list of craters on Mars.
where G is the universal constant of gravitation (commonly taken as G = 6.674 × 10 −11 m 3 kg −1 s −2), [10] M is the mass of Mars (most updated value: 6.41693 × 10 23 kg), [11] m is the mass of the satellite, r is the distance between Mars and the satellite, and is the angular velocity of the satellite, which is also equivalent to (T ...