Search results
Results from the WOW.Com Content Network
Here, it is φ latitude, λ longitude, and t time, ω a the angular frequency of one year, ω d the angular frequency of one solar day, and τ = ω d t + λ the local time. t a = June 21 is the date of northern summer solstice, and τ d = 15:00 is the local time of maximum diurnal temperature.
The troposphere is the lowest layer of Earth's atmosphere. It extends from Earth's surface to an average height of about 12 km (7.5 mi; 39,000 ft), although this altitude varies from about 9 km (5.6 mi; 30,000 ft) at the geographic poles to 17 km (11 mi; 56,000 ft) at the Equator, [17] with some variation due
The temperature of the thermopause could range from nearly absolute zero to 987.547 °C (1,810 °F). Below this, the atmosphere is defined to be active [ clarification needed ] on the insolation received, due to the increased presence of heavier gases such as monatomic oxygen.
The worldwide solar-driven wind results in the so-called Sq (solar quiet) current system in the E region of the Earth's ionosphere (ionospheric dynamo region) (100–130 km (60–80 mi) altitude). [citation needed] Resulting from this current is an electrostatic field directed west–east (dawn–dusk) in the equatorial day side of the ionosphere.
The mesopause is the point of minimum temperature at the boundary between the mesosphere and the thermosphere atmospheric regions. Due to the lack of solar heating and very strong radiative cooling from carbon dioxide, the mesosphere is the coldest region on Earth with temperatures as low as -100 °C (-148 °F or 173 K). [1]
These layers are the troposphere, stratosphere, mesosphere, and thermosphere. The troposphere is the lowest of the four layers and extends from the surface of the Earth to about 11 km (6.8 mi) into the atmosphere, where the tropopause (the boundary between the troposphere stratosphere) is located. The width of the troposphere can vary depending ...
The F 2 layer exists from about 220 to 800 km (140 to 500 miles) above the surface of the Earth. The F 2 layer is the principal reflecting layer for HF radio communications during both day and night. The horizon-limited distance for one-hop F 2 propagation is usually around 4,000 km (2,500 miles).
Both philosophers reasoned the region from the Arctic Circle to the pole to be permanently frozen. This region thought uninhabitable, was called the "Frigid Zone." The only area believed to be habitable was the northern "Temperate Zone" (the southern one not having been discovered), lying between the "Frigid Zones" and the "Torrid Zone".