Search results
Results from the WOW.Com Content Network
To represent the number 1,230,400 in normalized scientific notation, the decimal separator would be moved 6 digits to the left and × 10 6 appended, resulting in 1.2304 × 10 6. The number −0.004 0321 would have its decimal separator shifted 3 digits to the right instead of the left and yield −4.0321 × 10 −3 as a result.
When a real number like .007 is denoted alternatively by 7.0 × 10 —3 then it is said that the number is represented in scientific notation.More generally, to write a number in the form a × 10 b, where 1 <= a < 10 and b is an integer, is to express it in scientific notation, and a is called the significand or the mantissa, and b is its exponent. [3]
Engineering notation or engineering form (also technical notation) is a version of scientific notation in which the exponent of ten is always selected to be divisible by three to match the common metric prefixes, i.e. scientific notation that aligns with powers of a thousand, for example, 531×10 3 instead of 5.31×10 5 (but on calculator displays written without the ×10 to save space).
1. Denotes addition and is read as plus; for example, 3 + 2. 2. Denotes that a number is positive and is read as plus. Redundant, but sometimes used for emphasizing that a number is positive, specially when other numbers in the context are or may be negative; for example, +2. 3.
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]
A ray through the unit hyperbola x 2 − y 2 = 1 at the point (cosh a, sinh a), where a is twice the area between the ray, the hyperbola, and the x-axis. For points on the hyperbola below the x-axis, the area is considered negative (see animated version with comparison with the trigonometric (circular) functions).
X-ray absorption is reported as which orbital absorbed the x-ray photon. In EXAFS and XMCD the L-edge or the L absorption edge is the point where the L orbital begins to absorb x-rays. Auger peaks are identified with three orbital definitions, for example KL 1 L 2 .