enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kirchhoff's diffraction formula - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_diffraction...

    Kirchhoff's integral theorem, sometimes referred to as the Fresnel–Kirchhoff integral theorem, [3] uses Green's second identity to derive the solution of the homogeneous scalar wave equation at an arbitrary spatial position P in terms of the solution of the wave equation and its first order derivative at all points on an arbitrary closed surface as the boundary of some volume including P.

  3. Diffraction - Wikipedia

    en.wikipedia.org/wiki/Diffraction

    Sound waves can diffract around objects, which is why one can still hear someone calling even when hiding behind a tree. [19] Diffraction can also be a concern in some technical applications; it sets a fundamental limit to the resolution of a camera, telescope, or microscope. Other examples of diffraction are considered below.

  4. Acoustic wave - Wikipedia

    en.wikipedia.org/wiki/Acoustic_wave

    An acoustic wave is a mechanical wave that transmits energy through the movements of atoms and molecules. Acoustic waves transmit through fluids in a longitudinal manner (movement of particles are parallel to the direction of propagation of the wave); in contrast to electromagnetic waves that transmit in transverse manner (movement of particles at a right angle to the direction of propagation ...

  5. Atmospheric diffraction - Wikipedia

    en.wikipedia.org/wiki/Atmospheric_diffraction

    Optical atmospheric diffraction; Radio wave diffraction is the scattering of radio frequency or lower frequencies from the Earth's ionosphere, resulting in the ability to achieve greater distance radio broadcasting. Sound wave diffraction is the bending of sound waves, as the sound travels around edges of geometric objects. This produces the ...

  6. List of equations in wave theory - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_wave...

    Intuitively the wave envelope is the "global profile" of the wave, which "contains" changing "local profiles inside the global profile". Each propagates at generally different speeds determined by the important function called the dispersion relation .

  7. Acousto-optic modulator - Wikipedia

    en.wikipedia.org/wiki/Acousto-optic_modulator

    Λ is the wavelength of the sound wave, λ is that of the light wave, and n is the refractive index of the crystal in the AOD (which should be omitted. This is a mistake). This is a mistake). The +1 order has a positive frequency shift compared to the incident light; The 0th order has the same frequency as the incident light.

  8. Diffraction from slits - Wikipedia

    en.wikipedia.org/wiki/Diffraction_from_slits

    Because diffraction is the result of addition of all waves (of given wavelength) along all unobstructed paths, the usual procedure is to consider the contribution of an infinitesimally small neighborhood around a certain path (this contribution is usually called a wavelet) and then integrate over all paths (= add all wavelets) from the source to the detector (or given point on a screen).

  9. Room acoustics - Wikipedia

    en.wikipedia.org/wiki/Room_acoustics

    It changes the disturbing echo of the sound into a mild reverb which decays over time. Diffraction is the change of a sound wave's propagation to avoid obstacles. According to Huygens’ principle, when a sound wave is partially blocked by an obstacle, the remaining part that gets through acts as a source of secondary waves. [17]