Search results
Results from the WOW.Com Content Network
Computer-assisted organic synthesis software is a type of application software used in organic chemistry in tandem with computational chemistry to help facilitate the tasks of designing, predicting, and producing chemical reactions. CAOS aims to identify a series of chemical reactions which, from a starting compound, can produce a desired molecule.
The simplest form of a group-contribution method is the determination of a component property by summing up the group contributions : [] = +.This simple form assumes that the property (normal boiling point in the example) is strictly linearly dependent on the number of groups, and additionally no interaction between groups and molecules are assumed.
Thus it was noted that along the reaction coordinate of pericyclic processes one could have either a Möbius or a Hückel array of basis orbitals. With 4n or 4n + 2 electrons, one is then led to a prediction of allowedness or forbiddenness. Additionally, the M–H mnemonics give the MOs at part reaction. At each degeneracy there is a crossing ...
Computational chemistry can help predict values like activation energy from catalysis. The presence of the catalyst opens a different reaction pathway (shown in red) with lower activation energy. The final result and the overall thermodynamics are the same. Computational chemistry is a tool for analyzing catalytic systems without doing experiments.
Collision theory is a principle of chemistry used to predict the rates of chemical reactions. It states that when suitable particles of the reactant hit each other with the correct orientation, only a certain amount of collisions result in a perceptible or notable change; these successful changes are called successful collisions.
A chemical equation is the symbolic representation of a chemical reaction in the form of symbols and chemical formulas.The reactant entities are given on the left-hand side and the product entities are on the right-hand side with a plus sign between the entities in both the reactants and the products, and an arrow that points towards the products to show the direction of the reaction. [1]
This is a purely kinematic restriction on the reaction simplex, a hyperplane in composition space, or N‑space, whose dimensionality equals the number of linearly-independent chemical reactions. This is necessarily less than the number of chemical components, since each reaction manifests a relation between at least two chemicals.
In chemistry, the law of mass action is the proposition that the rate of a chemical reaction is directly proportional to the product of the activities or concentrations of the reactants. [1] It explains and predicts behaviors of solutions in dynamic equilibrium.