Search results
Results from the WOW.Com Content Network
In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude of torque the object experiences in a given magnetic field. When the same magnetic field is applied ...
The magnetic moment of an object is an intrinsic property and does not change with distance, and thus can be used to measure "how strong" a magnet is. For example, Earth possesses an enormous magnetic moment, however we are very distant from its center and experience only a tiny magnetic flux density (measured in tesla ) on its surface.
In electromagnetism, the magnetic susceptibility (from Latin susceptibilis 'receptive'; denoted χ, chi) is a measure of how much a material will become magnetized in an applied magnetic field. It is the ratio of magnetization M (magnetic moment per unit volume) to the applied magnetic field intensity H.
More precisely, the term magnetic moment normally refers to a system's magnetic dipole moment, which produces the first term in the multipole expansion [note 1] of a general magnetic field. Both the torque and force exerted on a magnet by an external magnetic field are proportional to that magnet's magnetic moment. The magnetic moment is a ...
Since the SI unit of magnetic moment is A⋅m 2, the SI unit of magnetization M is ampere per meter, identical to that of the H-field. The magnetization M field of a region points in the direction of the average magnetic dipole moment in that region. Magnetization field lines, therefore, begin near the magnetic south pole and ends near the ...
While the magnetic moments (the black arrows) are oriented the same for both cases of γ, the precession is in opposite directions. Spin and magnetic moment are in the same direction for γ > 0 (as for protons). Protons, neutrons, and many nuclei carry nuclear spin, which gives rise to a gyromagnetic ratio as above. The ratio is conventionally ...
A magnet's magnetic moment (also called magnetic dipole moment and usually denoted μ) is a vector that characterizes the magnet's overall magnetic properties. For a bar magnet, the direction of the magnetic moment points from the magnet's south pole to its north pole, [ 15 ] and the magnitude relates to how strong and how far apart these poles ...
The Barkhausen effect is a series of sudden changes in the size and orientation of ferromagnetic domains, or microscopic clusters of aligned atomic magnets , that occur during a continuous process of magnetization or demagnetization. The Barkhausen effect offered direct evidence for the existence of ferromagnetic domains, which previously had ...