enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Commutative property - Wikipedia

    en.wikipedia.org/wiki/Commutative_property

    The Egyptians used the commutative property of multiplication to simplify computing products. [7] [8] Euclid is known to have assumed the commutative property of multiplication in his book Elements. [9] Formal uses of the commutative property arose in the late 18th and early 19th centuries, when mathematicians began to work on a theory of ...

  3. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    The definition of multiplication is a part of all these definitions. A fundamental aspect of these definitions is that every real number can be approximated to any accuracy by rational numbers. A standard way for expressing this is that every real number is the least upper bound of a set of rational numbers.

  4. Commuting matrices - Wikipedia

    en.wikipedia.org/wiki/Commuting_matrices

    The property of two matrices commuting is not transitive: A matrix may commute with both and , and still and do not commute with each other. As an example, the identity matrix commutes with all matrices, which between them do not all commute.

  5. Commute - Wikipedia

    en.wikipedia.org/wiki/Commute

    Commutative semigroup, commutative monoid, abelian group, and commutative ring, algebraic structures with the commutative property; Commuting matrices, sets of matrices whose products do not depend on the order of multiplication; Commutator, a measure of the failure of two elements to be commutative in a group or ring

  6. Identity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Identity_(mathematics)

    Visual proof of the Pythagorean identity: for any angle , the point (,) = (⁡, ⁡) lies on the unit circle, which satisfies the equation + =.Thus, ⁡ + ⁡ =. In mathematics, an identity is an equality relating one mathematical expression A to another mathematical expression B, such that A and B (which might contain some variables) produce the same value for all values of the variables ...

  7. Addition - Wikipedia

    en.wikipedia.org/wiki/Addition

    Commutative property: Mentioned above, using the pattern a + b = b + a reduces the number of "addition facts" from 100 to 55. One or two more: Adding 1 or 2 is a basic task, and it can be accomplished through counting on or, ultimately, intuition. [36] Zero: Since zero is the additive identity, adding zero is trivial.

  8. Property (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Property_(mathematics)

    In mathematics, a property is any characteristic that applies to a given set. [1] Rigorously, a property p defined for all elements of a set X is usually defined as a function p: X → {true, false}, that is true whenever the property holds; or, equivalently, as the subset of X for which p holds; i.e. the set {x | p(x) = true}; p is its indicator function.

  9. Group (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Group_(mathematics)

    The definition of a group does not require that = for all elements and in ⁠ ⁠. If this additional condition holds, then the operation is said to be commutative, and the group is called an abelian group. It is a common convention that for an abelian group either additive or multiplicative notation may be used, but for a nonabelian group only ...