Search results
Results from the WOW.Com Content Network
Eddy currents in conductors of non-zero resistivity generate heat as well as electromagnetic forces. The heat can be used for induction heating. The electromagnetic forces can be used for levitation, creating movement, or to give a strong braking effect. Eddy currents can also have undesirable effects, for instance power loss in transformers.
In the traditional version of eddy current testing an alternating (AC) magnetic field is used to induce eddy currents inside the material to be investigated. If the material contains a crack or flaw which make the spatial distribution of the electrical conductivity nonuniform, the path of the eddy currents is perturbed and the impedance of the ...
These are called eddy currents. On the lefthand side nearest to the other wire (1) the eddy current is in the opposite direction to the main current (big pink arrow) in the wire, so it subtracts from the main current, reducing it. On the righthand side (2) the eddy current is in the same direction as the main current so it adds to it ...
In Engineering Electromagnetics, Hayt points out that in a power station a busbar for alternating current at 60 Hz with a radius larger than one-third of an inch (8 mm) is a waste of copper, [20] and in practice bus bars for heavy AC current are rarely more than half an inch (12 mm) thick except for mechanical reasons.
Eddy currents flow in closed loops in planes perpendicular to the magnetic field. They have useful applications in eddy current brakes and induction heating systems. However eddy currents induced in the metal magnetic cores of transformers and AC motors and generators are undesirable since they dissipate energy (called core losses) as heat in ...
Eddy current losses Eddy currents are induced in the conductive metal transformer core by the changing magnetic field, and this current flowing through the resistance of the iron dissipates energy as heat in the core. The eddy current loss is a complex function of the square of supply frequency and inverse square of the material thickness. [20]
Induction heating — Heat produced in a conductor when eddy currents pass through it. Joule heating — Heat produced in a conductor when charges move through it, such as in resistors and wires. Lightning — powerful natural electrostatic discharge produced during a thunderstorm. Lightning's abrupt electric discharge is accompanied by the ...
The history of linear electric motors can be traced back at least as far as the 1840s to the work of Charles Wheatstone at King's College in London, [3] but Wheatstone's model was too inefficient to be practical. A feasible linear induction motor is described in US patent 782312 (1905; inventor Alfred Zehden of Frankfurt-am-Main), and is for ...