enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Branching factor - Wikipedia

    en.wikipedia.org/wiki/Branching_factor

    For example, if the branching factor is 10, then there will be 10 nodes one level down from the current position, 10 2 (or 100) nodes two levels down, 10 3 (or 1,000) nodes three levels down, and so on. The higher the branching factor, the faster this "explosion" occurs. The branching factor can be cut down by a pruning algorithm.

  3. 62 (number) - Wikipedia

    en.wikipedia.org/wiki/62_(number)

    62 is: the eighteenth discrete semiprime ( 2 × 31 {\displaystyle 2\times 31} ) and tenth of the form (2.q), where q is a higher prime. with an aliquot sum of 34 ; itself a semiprime , within an aliquot sequence of seven composite numbers (62, 34 , 20 , 22 , 14 , 10 , 8 , 7 , 1 ,0) to the Prime in the 7 -aliquot tree.

  4. List of integer sequences - Wikipedia

    en.wikipedia.org/wiki/List_of_integer_sequences

    A number that has the same number of digits as the number of digits in its prime factorization, including exponents but excluding exponents equal to 1. A046758: Extravagant numbers: 4, 6, 8, 9, 12, 18, 20, 22, 24, 26, 28, 30, 33, 34, 36, 38, ... A number that has fewer digits than the number of digits in its prime factorization (including ...

  5. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial ...

  6. Tree diagram (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Tree_diagram_(probability...

    A tree diagram may represent a series of independent events (such as a set of coin flips) or conditional probabilities (such as drawing cards from a deck, without replacing the cards). [1] Each node on the diagram represents an event and is associated with the probability of that event.

  7. 63 (number) - Wikipedia

    en.wikipedia.org/wiki/63_(number)

    It is the only number in the Mersenne sequence whose prime factors are each factors of at least one previous element of the sequence (3 and 7, respectively the first and second Mersenne primes). [7] In the list of Mersenne numbers, 63 lies between Mersenne primes 31 and 127, with 127 the thirty-first prime number. [5]

  8. Discover the latest breaking news in the U.S. and around the world — politics, weather, entertainment, lifestyle, finance, sports and much more.

  9. Table of Gaussian integer factorizations - Wikipedia

    en.wikipedia.org/wiki/Table_of_Gaussian_Integer...

    The factorizations are often not unique in the sense that the unit could be absorbed into any other factor with exponent equal to one. The entry 4+2i = −i(1+i) 2 (2+i), for example, could also be written as 4+2i= (1+i) 2 (1−2i). The entries in the table resolve this ambiguity by the following convention: the factors are primes in the right ...