Search results
Results from the WOW.Com Content Network
Global optimization is distinguished from local optimization by its focus on finding the minimum or maximum over the given set, as opposed to finding local minima or maxima. Finding an arbitrary local minimum is relatively straightforward by using classical local optimization methods. Finding the global minimum of a function is far more ...
Local search is an anytime algorithm; it can return a valid solution even if it's interrupted at any time after finding the first valid solution. Local search is typically an approximation or incomplete algorithm because the search may stop even if the current best solution found is not optimal. This can happen even if termination happens ...
Boender-Rinnooy-Stougie-Timmer algorithm (BRST) is an optimization algorithm suitable for finding global optimum of black box functions. In their paper Boender et al. [1] describe their method as a stochastic method involving a combination of sampling, clustering and local search, terminating with a range of confidence intervals on the value of the global minimum.
In both the global and local cases, the concept of a strict extremum can be defined. For example, x ∗ is a strict global maximum point if for all x in X with x ≠ x ∗, we have f(x ∗) > f(x), and x ∗ is a strict local maximum point if there exists some ε > 0 such that, for all x in X within distance ε of x ∗ with x ≠ x ∗, we ...
When the objective function is a convex function, then any local minimum will also be a global minimum. There exist efficient numerical techniques for minimizing convex functions, such as interior-point methods .
Algorithms to locate transition state geometries fall into two main categories: local methods and semi-global methods. Local methods are suitable when the starting point for the optimization is very close to the true transition state (very close will be defined shortly) and semi-global methods find application when it is sought to locate the ...
Deterministic global optimization methods are typically used when locating the global solution is a necessity (i.e. when the only naturally occurring state described by a mathematical model is the global minimum of an optimization problem), when it is extremely difficult to find a feasible solution, or simply when the user desires to locate the ...
Calculating a global alignment is a form of global optimization that "forces" the alignment to span the entire length of all query sequences. By contrast, local alignments identify regions of similarity within long sequences that are often widely divergent overall. Local alignments are often preferable, but can be more difficult to calculate ...