enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Abel–Ruffini theorem - Wikipedia

    en.wikipedia.org/wiki/Abel–Ruffini_theorem

    Abel wrote: "The first and, if I am not mistaken, the only one who, before me, has sought to prove the impossibility of the algebraic solution of general equations is the mathematician Ruffini. But his memoir is so complicated that it is very difficult to determine the validity of his argument.

  3. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    As Fermat did for the case n = 4, Euler used the technique of infinite descent. [50] The proof assumes a solution (x, y, z) to the equation x 3 + y 3 + z 3 = 0, where the three non-zero integers x, y, and z are pairwise coprime and not all positive. One of the three must be even, whereas the other two are odd.

  4. Indeterminate system - Wikipedia

    en.wikipedia.org/wiki/Indeterminate_system

    An indeterminate system by definition is consistent, in the sense of having at least one solution. [3] For a system of linear equations, the number of equations in an indeterminate system could be the same as the number of unknowns, less than the number of unknowns (an underdetermined system ), or greater than the number of unknowns (an ...

  5. Zero to the power of zero - Wikipedia

    en.wikipedia.org/wiki/Zero_to_the_power_of_zero

    Zero to the power of zero, denoted as 0 0, is a mathematical expression with different interpretations depending on the context. In certain areas of mathematics, such as combinatorics and algebra, 0 0 is conventionally defined as 1 because this assignment simplifies many formulas and ensures consistency in operations involving exponents.

  6. Sylvester equation - Wikipedia

    en.wikipedia.org/wiki/Sylvester_equation

    Proof. The equation A X + X B = C {\displaystyle AX+XB=C} is a linear system with m n {\displaystyle mn} unknowns and the same number of equations. Hence it is uniquely solvable for any given C {\displaystyle C} if and only if the homogeneous equation A X + X B = 0 {\displaystyle AX+XB=0} admits only the trivial solution 0 {\displaystyle 0} .

  7. Actual infinity - Wikipedia

    en.wikipedia.org/wiki/Actual_infinity

    The original Wiles's proof of Fermat's Last Theorem, used not only the full power of ZF with the axiom of choice, but used implicitly a further axiom that implies the existence of very large sets. The requirement of this further axiom has been later dismissed, but infinite sets remains used in a fundamental way.

  8. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    For example, the solution set for the above equation is a line, since a point in the solution set can be chosen by specifying the value of the parameter z. An infinite solution of higher order may describe a plane, or higher-dimensional set. Different choices for the free variables may lead to different descriptions of the same solution set.

  9. Axiom of infinity - Wikipedia

    en.wikipedia.org/wiki/Axiom_of_infinity

    Using first-order logic primitive symbols, the axiom can be expressed as follows: [2] ( ( ()) ( ( (( =))))). In English, this sentence means: "there exists a set 𝐈 such that the empty set is an element of it, and for every element of 𝐈, there exists an element of 𝐈 such that is an element of , the elements of are also elements of , and nothing else is an element of ."