enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tree (abstract data type) - Wikipedia

    en.wikipedia.org/wiki/Tree_(abstract_data_type)

    The height of the root is the height of the tree. The depth of a node is the length of the path to its root (i.e., its root path). Thus the root node has depth zero, leaf nodes have height zero, and a tree with only a single node (hence both a root and leaf) has depth and height zero. Conventionally, an empty tree (tree with no nodes, if such ...

  3. Level ancestor problem - Wikipedia

    en.wikipedia.org/wiki/Level_ancestor_problem

    In fact in order to answer a level ancestor query, the algorithm needs to jump from a path to another until it reaches the root and there could be Θ(√ n) of such paths on a leaf-to-root path. This leads us to an algorithm that can pre-process the tree in O( n ) time and answers queries in O( √ n ).

  4. Tree (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Tree_(graph_theory)

    The root has depth zero, leaves have height zero, and a tree with only a single vertex (hence both a root and leaf) has depth and height zero. Conventionally, an empty tree (a tree with no vertices, if such are allowed) has depth and height −1. A k-ary tree (for nonnegative integers k) is a rooted tree in which each vertex has at most k children.

  5. Suffix tree - Wikipedia

    en.wikipedia.org/wiki/Suffix_tree

    The six paths from the root to the leaves (shown as boxes) correspond to the six suffixes A$, NA$, ANA$, NANA$, ANANA$ and BANANA$. The numbers in the leaves give the start position of the corresponding suffix. Suffix links, drawn dashed, are used during construction.

  6. Shortest-path tree - Wikipedia

    en.wikipedia.org/wiki/Shortest-path_tree

    The numbers beside the vertices indicate the distance from the root vertex. In mathematics and computer science, a shortest-path tree rooted at a vertex v of a connected, undirected graph G is a spanning tree T of G, such that the path distance from root v to any other vertex u in T is the shortest path distance from v to u in G.

  7. Binary tree - Wikipedia

    en.wikipedia.org/wiki/Binary_tree

    Reading bitwise from left to right, starting at bit d − 1, where d is the node's distance from the root (d = ⌊log 2 (i+1)⌋) and the node in question is not the root itself (d > 0). When the breadth-index is masked at bit d − 1, the bit values 0 and 1 mean to step either left or right, respectively.

  8. Dijkstra's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra's_algorithm

    The variable alt on line 14 is the length of the path from the source node to the neighbor node v if it were to go through u. If this path is shorter than the current shortest path recorded for v, then the distance of v is updated to alt. [7] A demo of Dijkstra's algorithm based on Euclidean distance.

  9. k-way merge algorithm - Wikipedia

    en.wikipedia.org/wiki/K-way_merge_algorithm

    It updates the nodes on the path from the updated leaf to the root (replacement selection). The removed element is the overall winner. Therefore, it has won each game on the path from the input array to the root. When selecting a new element from the input array, the element needs to compete against the previous losers on the path to the root.