enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Suffix tree - Wikipedia

    en.wikipedia.org/wiki/Suffix_tree

    The six paths from the root to the leaves (shown as boxes) correspond to the six suffixes A$, NA$, ANA$, NANA$, ANANA$ and BANANA$. The numbers in the leaves give the start position of the corresponding suffix. Suffix links, drawn dashed, are used during construction.

  3. Tree (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Tree_(graph_theory)

    The root has depth zero, leaves have height zero, and a tree with only a single vertex (hence both a root and leaf) has depth and height zero. Conventionally, an empty tree (a tree with no vertices, if such are allowed) has depth and height −1. A k-ary tree (for nonnegative integers k) is a rooted tree in which each vertex has at most k children.

  4. Shortest-path tree - Wikipedia

    en.wikipedia.org/wiki/Shortest-path_tree

    The numbers beside the vertices indicate the distance from the root vertex. In mathematics and computer science, a shortest-path tree rooted at a vertex v of a connected, undirected graph G is a spanning tree T of G, such that the path distance from root v to any other vertex u in T is the shortest path distance from v to u in G.

  5. Binary tree - Wikipedia

    en.wikipedia.org/wiki/Binary_tree

    Reading bitwise from left to right, starting at bit d − 1, where d is the node's distance from the root (d = ⌊log 2 (i+1)⌋) and the node in question is not the root itself (d > 0). When the breadth-index is masked at bit d − 1, the bit values 0 and 1 mean to step either left or right, respectively.

  6. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    Thus at each step one can either go down (append a (, 1) to the end) or go right (add one to the last number) (except the root, which is extra and can only go down), which shows the correspondence between the infinite binary tree and the above numbering; the sum of the entries (minus one) corresponds to the distance from the root, which agrees ...

  7. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    Shortest path (A, C, E, D, F), blue, between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.

  8. Unrooted binary tree - Wikipedia

    en.wikipedia.org/wiki/Unrooted_binary_tree

    The leaf-to-leaf path-length on a fixed Unrooted Binary Tree (UBT) T encodes the number of edges belonging to the unique path in T connecting a given leaf to another leaf. For example, by referring to the UBT shown in the image on the right, the path-length p 1 , 2 {\displaystyle p_{1,2}} between the leaves 1 and 2 is equal to 2 whereas the ...

  9. B-tree - Wikipedia

    en.wikipedia.org/wiki/B-tree

    This is where the search for a particular key would begin, traversing a path that terminates in a leaf. Most pages in this structure will be leaf pages which refer to specific table rows. Because each node (or internal page) can have more than two children, a B-tree index will usually have a shorter height (the distance from the root to the ...