Search results
Results from the WOW.Com Content Network
Spectral clustering has been successfully applied on large graphs by first identifying their community structure, and then clustering communities. [ 4 ] Spectral clustering is closely related to nonlinear dimensionality reduction , and dimension reduction techniques such as locally-linear embedding can be used to reduce errors from noise or ...
Applications based on diffusion maps include face recognition, [7] spectral clustering, low dimensional representation of images, image segmentation, [8] 3D model segmentation, [9] speaker verification [10] and identification, [11] sampling on manifolds, anomaly detection, [12] [13] image inpainting, [14] revealing brain resting state networks ...
scikit-learn, a popular machine learning library in Python implements t-SNE with both exact solutions and the Barnes-Hut approximation. Tensorboard, the visualization kit associated with TensorFlow, also implements t-SNE (online version) The Julia package TSne implements t-SNE
DBSCAN optimizes the following loss function: [10] For any possible clustering = {, …,} out of the set of all clusterings , it minimizes the number of clusters under the condition that every pair of points in a cluster is density-reachable, which corresponds to the original two properties "maximality" and "connectivity" of a cluster: [1]
Laplacian eigenmaps uses spectral techniques to perform dimensionality reduction. [14] This technique relies on the basic assumption that the data lies in a low-dimensional manifold in a high-dimensional space. [ 15 ]
Algorithms capable of operating with kernels include the kernel perceptron, support-vector machines (SVM), Gaussian processes, principal components analysis (PCA), canonical correlation analysis, ridge regression, spectral clustering, linear adaptive filters and many others.
Biclustering, block clustering, [1] [2] Co-clustering or two-mode clustering [3] [4] [5] is a data mining technique which allows simultaneous clustering of the rows and columns of a matrix. The term was first introduced by Boris Mirkin [ 6 ] to name a technique introduced many years earlier, [ 6 ] in 1972, by John A. Hartigan .
Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some specific sense defined by the analyst) to each other than to those in other groups (clusters).