Search results
Results from the WOW.Com Content Network
Like distinct-degree factorization algorithm, Rabin's algorithm [5] is based on the Lemma stated above. Distinct-degree factorization algorithm tests every d not greater than half the degree of the input polynomial. Rabin's algorithm takes advantage that the factors are not needed for considering fewer d. Otherwise, it is similar to distinct ...
The Cantor–Zassenhaus algorithm takes as input a square-free polynomial (i.e. one with no repeated factors) of degree n with coefficients in a finite field whose irreducible polynomial factors are all of equal degree (algorithms exist for efficiently factoring arbitrary polynomials into a product of polynomials satisfying these conditions, for instance, () / ((), ′ ()) is a squarefree ...
If the original polynomial is the product of factors at least two of which are of degree 2 or higher, this technique only provides a partial factorization; otherwise the factorization is complete. In particular, if there is exactly one non-linear factor, it will be the polynomial left after all linear factors have been factorized out.
In number theory, Berlekamp's root finding algorithm, also called the Berlekamp–Rabin algorithm, is the probabilistic method of finding roots of polynomials over the field with elements. The method was discovered by Elwyn Berlekamp in 1970 [ 1 ] as an auxiliary to the algorithm for polynomial factorization over finite fields.
Therefore, the algorithm of square-free factorization is basic in computer algebra. Over a field of characteristic 0, the quotient of f {\displaystyle f} by its greatest common divisor (GCD) with its derivative is the product of the a i {\displaystyle a_{i}} in the above square-free decomposition.
In mathematics, the splitting circle method is a numerical algorithm for the numerical factorization of a polynomial and, ultimately, for finding its complex roots.It was introduced by Arnold Schönhage in his 1982 paper The fundamental theorem of algebra in terms of computational complexity (Technical report, Mathematisches Institut der Universität Tübingen).
An extension L that is a splitting field for a set of polynomials p(X) over K is called a normal extension of K.. Given an algebraically closed field A containing K, there is a unique splitting field L of p between K and A, generated by the roots of p.
The mechanism of Sudan's Algorithm is almost the same as the algorithm of Berlekamp–Welch Algorithm, except in the step 1, one wants to compute a bivariate polynomial of bounded (,) degree. Sudan's list decoding algorithm for Reed–Solomon code which is an improvement on Berlekamp and Welch algorithm, can solve the problem with t = ( 2 n d ...