enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Penalty method - Wikipedia

    en.wikipedia.org/wiki/Penalty_method

    In the above equations, (()) is the exterior penalty function while is the penalty coefficient. When the penalty coefficient is 0, f p = f . In each iteration of the method, we increase the penalty coefficient p {\displaystyle p} (e.g. by a factor of 10), solve the unconstrained problem and use the solution as the initial guess for the next ...

  3. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    The optimum of the linear cost function is where the red line intersects the polygon. The red line is a level set of the cost function, and the arrow indicates the direction in which we are optimizing. A closed feasible region of a problem with three variables is a convex polyhedron.

  4. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    Some of the local methods assume that the graph admits a perfect matching; if this is not the case, then some of these methods might run forever. [1]: 3 A simple technical way to solve this problem is to extend the input graph to a complete bipartite graph, by adding artificial edges with very large weights. These weights should exceed the ...

  5. Cutting-plane method - Wikipedia

    en.wikipedia.org/wiki/Cutting-plane_method

    Cutting planes were proposed by Ralph Gomory in the 1950s as a method for solving integer programming and mixed-integer programming problems. However, most experts, including Gomory himself, considered them to be impractical due to numerical instability, as well as ineffective because many rounds of cuts were needed to make progress towards the solution.

  6. Dual linear program - Wikipedia

    en.wikipedia.org/wiki/Dual_linear_program

    The dual of a given linear program (LP) is another LP that is derived from the original (the primal) LP in the following schematic way: Each variable in the primal LP becomes a constraint in the dual LP; Each constraint in the primal LP becomes a variable in the dual LP;

  7. Basic feasible solution - Wikipedia

    en.wikipedia.org/wiki/Basic_feasible_solution

    Since the number of BFS-s is finite and bounded by (), an optimal solution to any LP can be found in finite time by just evaluating the objective function in all () BFS-s. This is not the most efficient way to solve an LP; the simplex algorithm examines the BFS-s in a much more efficient way.

  8. Simplex algorithm - Wikipedia

    en.wikipedia.org/wiki/Simplex_algorithm

    In LP the objective function is a linear function, while the objective function of a linear–fractional program is a ratio of two linear functions. In other words, a linear program is a fractional–linear program in which the denominator is the constant function having the value one everywhere.

  9. Linear programming relaxation - Wikipedia

    en.wikipedia.org/wiki/Linear_programming_relaxation

    Then, for each subproblem i, it performs the following steps. Compute the optimal solution to the linear programming relaxation of the current subproblem. That is, for each variable x j in V i , we replace the constraint that x j be 0 or 1 by the relaxed constraint that it be in the interval [0,1]; however, variables that have already been ...