enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    It is a main task of exploratory data analysis, and a common technique for statistical data analysis, used in many fields, including pattern recognition, image analysis, information retrieval, bioinformatics, data compression, computer graphics and machine learning. Cluster analysis refers to a family of algorithms and tasks rather than one ...

  3. List of RNA-Seq bioinformatics tools - Wikipedia

    en.wikipedia.org/wiki/List_of_RNA-Seq...

    The estimated cluster configurations can be post-processed in order to identify differentially expressed genes and for generating gene- and sample-wise dendrograms and heatmaps. [60] DiffSplice is a method for differential expression detection and visualization, not dependent on gene annotations. This method is supported on identification of ...

  4. Spectral clustering - Wikipedia

    en.wikipedia.org/wiki/Spectral_clustering

    In a weighted graph, a vertex may have a large degree because of a small number of connected edges but with large weights just as well as due to a large number of connected edges with unit weights. A popular normalized spectral clustering technique is the normalized cuts algorithm or Shi–Malik algorithm introduced by Jianbo Shi and Jitendra ...

  5. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  6. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    Cluster analysis, a fundamental task in data mining and machine learning, involves grouping a set of data points into clusters based on their similarity. k -means clustering is a popular algorithm used for partitioning data into k clusters, where each cluster is represented by its centroid.

  7. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    Several of these models correspond to well-known heuristic clustering methods. For example, k-means clustering is equivalent to estimation of the EII clustering model using the classification EM algorithm. [8] The Bayesian information criterion (BIC) can be used to choose the best clustering model as well as the number of clusters. It can also ...

  8. Correlation clustering - Wikipedia

    en.wikipedia.org/wiki/Correlation_clustering

    For example, given nodes a,b,c such that a,b and a,c are similar while b,c are dissimilar, a perfect clustering is not possible. In such cases, the task is to find a clustering that maximizes the number of agreements (number of + edges inside clusters plus the number of − edges between clusters) or minimizes the number of disagreements (the ...

  9. Constrained clustering - Wikipedia

    en.wikipedia.org/wiki/Constrained_clustering

    In computer science, constrained clustering is a class of semi-supervised learning algorithms. Typically, constrained clustering incorporates either a set of must-link constraints, cannot-link constraints, or both, with a data clustering algorithm. A cluster in which the members conform to all must-link and cannot-link constraints is called a ...