enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Space travel under constant acceleration - Wikipedia

    en.wikipedia.org/wiki/Space_travel_under...

    From the planetary frame of reference, the ship's speed will appear to be limited by the speed of light — it can approach the speed of light, but never reach it. If a ship is using 1 g constant acceleration, it will appear to get near the speed of light in about a year, and have traveled about half a light year in distance. For the middle of ...

  3. Speed of light - Wikipedia

    en.wikipedia.org/wiki/Speed_of_Light

    For example, for visible light, the refractive index of glass is typically around 1.5, meaning that light in glass travels at ⁠ c / 1.5 ⁠ ≈ 200 000 km/s (124 000 mi/s); the refractive index of air for visible light is about 1.0003, so the speed of light in air is about 90 km/s (56 mi/s) slower than c.

  4. Relativistic rocket - Wikipedia

    en.wikipedia.org/wiki/Relativistic_rocket

    Relativistic rocket means any spacecraft that travels close enough to light speed for relativistic effects to become significant. The meaning of "significant" is a matter of context, but often a threshold velocity of 30% to 50% of the speed of light (0.3 c to 0.5 c ) is used.

  5. Twin paradox - Wikipedia

    en.wikipedia.org/wiki/Twin_paradox

    Consider a space ship traveling from Earth to the nearest star system: a distance d = 4 light years away, at a speed v = 0.8c (i.e., 80% of the speed of light). To make the numbers easy, the ship is assumed to attain full speed in a negligible time upon departure (even though it would actually take about 9 months accelerating at 1 g to get up ...

  6. Faster-than-light - Wikipedia

    en.wikipedia.org/wiki/Faster-than-light

    In the context of this article, "faster-than-light" means the transmission of information or matter faster than c, a constant equal to the speed of light in vacuum, which is 299,792,458 m/s (by definition of the metre) [3] or about 186,282.397 miles per second. This is not quite the same as traveling faster than light, since:

  7. Interstellar travel - Wikipedia

    en.wikipedia.org/wiki/Interstellar_travel

    For example, a spaceship could travel to a star 32 light-years away, initially accelerating at a constant 1.03g (i.e. 10.1 m/s 2) for 1.32 years (ship time), then stopping its engines and coasting for the next 17.3 years (ship time) at a constant speed, then decelerating again for 1.32 ship-years, and coming to a stop at the destination. After ...

  8. Relativistic mechanics - Wikipedia

    en.wikipedia.org/wiki/Relativistic_mechanics

    As a result, classical mechanics is extended correctly to particles traveling at high velocities and energies, and provides a consistent inclusion of electromagnetism with the mechanics of particles. This was not possible in Galilean relativity, where it would be permitted for particles and light to travel at any speed, including faster than light.

  9. Measurements of neutrino speed - Wikipedia

    en.wikipedia.org/wiki/Measurements_of_neutrino_speed

    with v being the neutrino speed and c the speed of light. The neutrino mass m is currently estimated as being 2 eV/c², and is possibly even lower than 0.2 eV/c². According to the latter mass value and the formula for relativistic energy, relative speed differences between light and neutrinos are smaller at high energies, and should arise as ...