enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Expected value - Wikipedia

    en.wikipedia.org/wiki/Expected_value

    v. t. e. In probability theory, the expected value (also called expectation, expectancy, expectation operator, mathematical expectation, mean, expectation value, or first moment) is a generalization of the weighted average. Informally, the expected value is the mean of the possible values a random variable can take, weighted by the probability ...

  3. Variance - Wikipedia

    en.wikipedia.org/wiki/Variance

    Variance is a measure of dispersion, meaning it is a measure of how far a set of numbers is spread out from their average value. It is the second central moment of a distribution, and the covariance of the random variable with itself, and it is often represented by , , , , or .

  4. Law of total variance - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_variance

    Law of total variance. In probability theory, the law of total variance[1] or variance decomposition formula or conditional variance formulas or law of iterated variances also known as Eve's law, [2] states that if and are random variables on the same probability space, and the variance of is finite, then. {\displaystyle \operatorname {Var} (Y ...

  5. Fisher information - Wikipedia

    en.wikipedia.org/wiki/Fisher_information

    In mathematical statistics, the Fisher information (sometimes simply called information[1]) is a way of measuring the amount of information that an observable random variable X carries about an unknown parameter θ of a distribution that models X. Formally, it is the variance of the score, or the expected value of the observed information.

  6. Conditional expectation - Wikipedia

    en.wikipedia.org/wiki/Conditional_expectation

    Conditional expectation. In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can ...

  7. Law of total expectation - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_expectation

    Law of total expectation. The proposition in probability theory known as the law of total expectation, [1] the law of iterated expectations[2] (LIE), Adam's law, [3] the tower rule, [4] and the smoothing theorem, [5] among other names, states that if is a random variable whose expected value is defined, and is any random variable on the same ...

  8. Standard deviation - Wikipedia

    en.wikipedia.org/wiki/Standard_deviation

    This is a "one pass" algorithm for calculating variance of n samples without the need to store prior data during the calculation. Applying this method to a time series will result in successive values of standard deviation corresponding to n data points as n grows larger with each new sample, rather than a constant-width sliding window calculation.

  9. Bias of an estimator - Wikipedia

    en.wikipedia.org/wiki/Bias_of_an_estimator

    In statistics, the bias of an estimator (or bias function) is the difference between this estimator 's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called unbiased. In statistics, "bias" is an objective property of an estimator. Bias is a distinct concept from consistency ...