enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    A system of polynomial equations (sometimes simply a polynomial system) is a set of simultaneous equations f1 = 0, ..., fh = 0 where the fi are polynomials in several variables, say x1, ..., xn, over some field k. A solution of a polynomial system is a set of values for the xi s which belong to some algebraically closed field extension K of k ...

  3. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    In mathematics, a system of linear equations (or linear system) is a collection of two or more linear equations involving the same variables. [1][2] For example, is a system of three equations in the three variables x, y, z. A solution to a linear system is an assignment of values to the variables such that all the equations are simultaneously ...

  4. Tridiagonal matrix algorithm - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

    In numerical linear algebra, the tridiagonal matrix algorithm, also known as the Thomas algorithm (named after Llewellyn Thomas), is a simplified form of Gaussian elimination that can be used to solve tridiagonal systems of equations. A tridiagonal system for n unknowns may be written as. {\displaystyle a_ {i}x_ {i-1}+b_ {i}x_ {i}+c_ {i}x_ {i+1 ...

  5. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    The same illustration for The midpoint method converges faster than the Euler method, as . Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to ...

  6. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    Solving an equation symbolically means that expressions can be used for representing the solutions. For example, the equation x + y = 2x – 1 is solved for the unknown x by the expression x = y + 1, because substituting y + 1 for x in the equation results in (y + 1) + y = 2 (y + 1) – 1, a true statement. It is also possible to take the ...

  7. Coefficient matrix - Wikipedia

    en.wikipedia.org/wiki/Coefficient_matrix

    Coefficient matrix. In general, a system with m linear equations and n unknowns can be written as. where are the unknowns and the numbers are the coefficients of the system. The coefficient matrix is the m × n matrix with the coefficient aij as the (i, j) th entry: [1] Then the above set of equations can be expressed more succinctly as.

  8. Overdetermined system - Wikipedia

    en.wikipedia.org/wiki/Overdetermined_system

    Overdetermined system. In mathematics, a system of equations is considered overdetermined if there are more equations than unknowns. [1][citation needed] An overdetermined system is almost always inconsistent (it has no solution) when constructed with random coefficients. However, an overdetermined system will have solutions in some cases, for ...

  9. Diophantine equation - Wikipedia

    en.wikipedia.org/wiki/Diophantine_equation

    In the following Diophantine equations, w, x, y, and z are the unknowns and the other letters are given constants: a x + b y = c {\displaystyle ax+by=c} This is a linear Diophantine equation or Bézout's identity. w 3 + x 3 = y 3 + z 3 {\displaystyle w^ {3}+x^ {3}=y^ {3}+z^ {3}} The smallest nontrivial solution in positive integers is 123 + 13 ...