enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kirchhoff's diffraction formula - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_diffraction...

    A geometrical arrangement used in deriving the Kirchhoff's diffraction formula. The area designated by A 1 is the aperture (opening), the areas marked by A 2 are opaque areas, and A 3 is the hemisphere as a part of the closed integral surface (consisted of the areas A 1, A 2, and A 3) for the Kirchhoff's integral theorem.

  3. List of equations in wave theory - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_wave...

    The wave envelope is the profile of the wave amplitudes; all transverse displacements are bound by the envelope profile. Intuitively the wave envelope is the "global profile" of the wave, which "contains" changing "local profiles inside the global profile".

  4. Sonochemistry - Wikipedia

    en.wikipedia.org/wiki/Sonochemistry

    After much research they decided that the best way to disperse sound into the water was to create bubbles at the same time as the sound. Another issue was the ratio of the amount of time it took for the lower frequency waves to penetrate the bubbles walls and access the water around the bubble, compared to the time from that point to the point ...

  5. Diffraction - Wikipedia

    en.wikipedia.org/wiki/Diffraction

    Diffraction can occur with any kind of wave. Ocean waves diffract around jetties and other obstacles. Circular waves generated by diffraction from the narrow entrance of a flooded coastal quarry. Sound waves can diffract around objects, which is why one can still hear someone calling even when hiding behind a tree. [19]

  6. Acoustical engineering - Wikipedia

    en.wikipedia.org/wiki/Acoustical_engineering

    This principle is particularly important in enclosed spaces. Diffraction is the bending of sound waves around surfaces in the path of the wave. Refraction is the bending of sound waves caused by changes in the medium through which the wave is passing. For example, temperature gradients can cause sound wave refraction. [27]

  7. Atmospheric diffraction - Wikipedia

    en.wikipedia.org/wiki/Atmospheric_diffraction

    Optical atmospheric diffraction; Radio wave diffraction is the scattering of radio frequency or lower frequencies from the Earth's ionosphere, resulting in the ability to achieve greater distance radio broadcasting. Sound wave diffraction is the bending of sound waves, as the sound travels around edges of geometric objects. This produces the ...

  8. Engineering students extinguish a fire with sound waves - AOL

    www.aol.com/news/2015-03-26-engineering-students...

    Early on, they used high-frequency waves, which they found to have no significant effect. Once they switched to the low-frequency variety -- the kind one often hears in hip-hop music -- they began ...

  9. Room acoustics - Wikipedia

    en.wikipedia.org/wiki/Room_acoustics

    It changes the disturbing echo of the sound into a mild reverb which decays over time. Diffraction is the change of a sound wave's propagation to avoid obstacles. According to Huygens’ principle, when a sound wave is partially blocked by an obstacle, the remaining part that gets through acts as a source of secondary waves. [17]