Search results
Results from the WOW.Com Content Network
The gas constant occurs in the ideal gas law: = = where P is the absolute pressure, V is the volume of gas, n is the amount of substance, m is the mass, and T is the thermodynamic temperature. R specific is the mass-specific gas constant. The gas constant is expressed in the same unit as molar heat.
It is common, especially in engineering and meteorological applications, to represent the specific gas constant by the symbol R. In such cases, the universal gas constant is usually given a different symbol such as ¯ or to distinguish it. In any case, the context and/or units of the gas constant should make it clear as to whether the universal ...
R is the gas constant, which must be expressed in units consistent with those chosen for pressure, volume and temperature. For example, in SI units R = 8.3145 J⋅K −1 ⋅mol −1 when pressure is expressed in pascals, volume in cubic meters, and absolute temperature in kelvin. The ideal gas law is an extension of experimentally discovered ...
where P is the pressure, V is volume, n is the number of moles, R is the universal gas constant and T is the absolute temperature. The proportionality constant, now named R, is the universal gas constant with a value of 8.3144598 (kPa∙L)/(mol∙K). An equivalent formulation of this law is: =
The relationship between the two constants is R s = R / m, where m is the molecular mass of the gas. The US Standard Atmosphere (USSA) uses 8.31432 m 3 ·Pa/(mol·K) as the value of R. However, the USSA in 1976 does recognize that this value is not consistent with the values of the Avogadro constant and the Boltzmann constant. [49]
the ideal gas law in molar form, which relates pressure, density, and temperature: = at each geopotential altitude, where g is the standard acceleration of gravity, and R specific is the specific gas constant for dry air (287.0528J⋅kg −1 ⋅K −1).
The Loschmidt constant or Loschmidt's number (symbol: ... × 10 25 m −3 at 0 °C and 1 atm. ... where R is the ideal gas constant.
where R is the ideal gas constant, T is temperature, M is average molecular weight, and g 0 is the gravitational acceleration at the planet's surface. Using the values T =273 K and M =29 g/mol as characteristic of the Earth's atmosphere, H = RT / Mg = (8.315*273)/(29*9.8) = 7.99, or about 8 km, which coincidentally is approximate height of Mt ...