Search results
Results from the WOW.Com Content Network
A closed line segment includes both endpoints, while an open line segment excludes both endpoints; a half-open line segment includes exactly one of the endpoints. In geometry , a line segment is often denoted using an overline ( vinculum ) above the symbols for the two endpoints, such as in AB .
A closed polygonal chain is one in which the first vertex coincides with the last one, or, alternatively, the first and the last vertices are also connected by a line segment. [1] A simple closed polygonal chain in the plane is the boundary of a simple polygon .
The line segments that form a polygon are called its edges or sides. An endpoint of a segment is called a vertex (plural: vertices) [2] or a corner. Edges and vertices are more formal, but may be ambiguous in contexts that also involve the edges and vertices of a graph; the more colloquial terms sides and corners can be used to avoid this ...
Closed graph theorems are of particular interest in functional analysis where there are many theorems giving conditions under which a linear map with a closed graph is necessarily continuous. If f : X → Y is a function between topological spaces whose graph is closed in X × Y and if Y is a compact space then f : X → Y is continuous. [4]
In the case of a line arrangement, each coordinate of the labeling assigns 0 to nodes on one side of one of the lines and 1 to nodes on the other side. [26] Dual graphs of simplicial arrangements have been used to construct infinite families of 3-regular partial cubes, isomorphic to the graphs of simple zonohedra. [27]
Some polygons of different kinds: open (excluding its boundary), boundary only (excluding interior), closed (including both boundary and interior), and self-intersecting. In geometry, a polygon (/ ˈ p ɒ l ɪ ɡ ɒ n /) is a plane figure made up of line segments connected to form a closed polygonal chain.
Geometrically, when the scalar field f is defined over a plane (n = 2), its graph is a surface z = f(x, y) in space, and the line integral gives the (signed) cross-sectional area bounded by the curve and the graph of f. See the animation to the right.
Concretely, one represents each element of the set as a vertex on the page and draws a line segment or curve that goes upward from x to y precisely when x < y and there is no z such that x < z < y. In this case, we say y covers x, or y is an immediate successor of x. In a Hasse diagram, it is required that the curves be drawn so that each meets ...