enow.com Web Search

  1. Ad

    related to: determine all roots calculator

Search results

  1. Results from the WOW.Com Content Network
  2. Polynomial root-finding algorithms - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding...

    Finding one root; Finding all roots; Finding roots in a specific region of the complex plane, typically the real roots or the real roots in a given interval (for example, when roots represents a physical quantity, only the real positive ones are interesting). For finding one root, Newton's method and other general iterative methods work ...

  3. Graeffe's method - Wikipedia

    en.wikipedia.org/wiki/Graeffe's_method

    In mathematics, Graeffe's method or Dandelin–Lobachesky–Graeffe method is an algorithm for finding all of the roots of a polynomial.It was developed independently by Germinal Pierre Dandelin in 1826 and Lobachevsky in 1834.

  4. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f ( x ) = 0 . As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form , root-finding algorithms provide approximations to zeros.

  5. Berlekamp–Rabin algorithm - Wikipedia

    en.wikipedia.org/wiki/Berlekamp–Rabin_algorithm

    In number theory, Berlekamp's root finding algorithm, also called the Berlekamp–Rabin algorithm, is the probabilistic method of finding roots of polynomials over the field with elements. The method was discovered by Elwyn Berlekamp in 1970 [ 1 ] as an auxiliary to the algorithm for polynomial factorization over finite fields.

  6. Muller's method - Wikipedia

    en.wikipedia.org/wiki/Muller's_method

    Muller's method is a recursive method that generates a new approximation of a root ξ of f at each iteration using the three prior iterations. Starting with three initial values x 0, x −1 and x −2, the first iteration calculates an approximation x 1 using those three, the second iteration calculates an approximation x 2 using x 1, x 0 and x −1, the third iteration calculates an ...

  7. Laguerre's method - Wikipedia

    en.wikipedia.org/wiki/Laguerre's_method

    If x is a simple root of the polynomial , then Laguerre's method converges cubically whenever the initial guess, , is close enough to the root . On the other hand, when x 1 {\displaystyle \ x_{1}\ } is a multiple root convergence is merely linear, with the penalty of calculating values for the polynomial and its first and second derivatives at ...

  8. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.

  9. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    To find the number of negative roots, change the signs of the coefficients of the terms with odd exponents, i.e., apply Descartes' rule of signs to the polynomial = + + This polynomial has two sign changes, as the sequence of signs is (−, +, +, −) , meaning that this second polynomial has two or zero positive roots; thus the original ...

  1. Ad

    related to: determine all roots calculator