Search results
Results from the WOW.Com Content Network
The lanthanide contraction is the greater-than-expected decrease in atomic radii and ionic radii of the elements in the lanthanide series, from left to right. It is caused by the poor shielding effect of nuclear charge by the 4f electrons along with the expected periodic trend of increasing electronegativity and nuclear charge on moving from left to right.
All lanthanide elements form trivalent cations, Ln 3+, whose chemistry is largely determined by the ionic radius, which decreases steadily from lanthanum (La) to lutetium (Lu). These elements are called lanthanides because the elements in the series are chemically similar to lanthanum .
The strength of the M-O bond tends to increase with the charge and decrease as the size of the metal ion increases. In fact there is a very good linear correlation between hydration enthalpy and the ratio of charge squared to ionic radius, z 2 /r. [4] For ions in solution Shannon's "effective ionic radius" is the measure most often used. [5]
Due to the lanthanide contraction, the ionic radius of hafnium(IV) (0.78 ångström) is almost the same as that of zirconium(IV) (0.79 angstroms). [1] Consequently, compounds of hafnium(IV) and zirconium(IV) have very similar chemical and physical properties. [1]
Lanthanide metals react exothermically with hydrogen to form LnH 2, dihydrides. [1] With the exception of Eu and Yb, which resemble the Ba and Ca hydrides (non-conducting, transparent salt-like compounds),they form black pyrophoric, conducting compounds [6] where the metal sub-lattice is face centred cubic and the H atoms occupy tetrahedral sites. [1]
Due to the large ionic radius and great electropositivity of La 3+, there is not much covalent contribution to its bonding and hence it has a limited coordination chemistry, like yttrium and the other lanthanides. [40] Lanthanum oxalate does not dissolve very much in alkali-metal oxalate solutions, and [La(acac) 3 (H 2 O) 2] decomposes around ...
Note: All measurements given are in picometers (pm). For more recent data on covalent radii see Covalent radius.Just as atomic units are given in terms of the atomic mass unit (approximately the proton mass), the physically appropriate unit of length here is the Bohr radius, which is the radius of a hydrogen atom.
Lanthanides can be used because their small size (ionic radius) gives them the ability to replace metal ions inside protein complex such as calcium or nickel. The optical properties of lanthanide ions such as Ln(III) originate in the special features of their electronic [Xe]4f n configurations. [ 4 ]