Search results
Results from the WOW.Com Content Network
The standard Gibbs free energy of formation (G f °) of a compound is the change of Gibbs free energy that accompanies the formation of 1 mole of a substance in its standard state from its constituent elements in their standard states (the most stable form of the element at 1 bar of pressure and the specified temperature, usually 298.15 K or 25 ...
This equation, Bragg's law, describes the condition on θ for constructive interference. [12] A map of the intensities of the scattered waves as a function of their angle is called a diffraction pattern. Strong intensities known as Bragg peaks are obtained in the diffraction pattern when the scattering angles satisfy Bragg condition.
Solid CaSiO 3: −1630 Carbon Solid C 0 Carbon Solid C 1.9 Carbon: Gas C 716.67 Carbon dioxide: Gas CO 2: −393.509 Carbon disulfide: Liquid CS 2: 89.41 Carbon disulfide: Gas CS 2: 116.7 Carbon monoxide: Gas CO −110.525 Carbonyl chloride Gas COCl 2: −218.8 Carbon dioxide (un–ionized) Aqueous CO 2 (aq) −419.26 Bicarbonate ion Aqueous
In physics, the thermal equation of state is a mathematical expression of pressure P, temperature T, and, volume V.The thermal equation of state for ideal gases is the ideal gas law, expressed as PV=nRT (where R is the gas constant and n the amount of substance), while the thermal equation of state for solids is expressed as:
The standard state of a material (pure substance, mixture or solution) is a reference point used to calculate its properties under different conditions.A degree sign (°) or a superscript Plimsoll symbol (⦵) is used to designate a thermodynamic quantity in the standard state, such as change in enthalpy (ΔH°), change in entropy (ΔS°), or change in Gibbs free energy (ΔG°).
At present, there is no single equation of state that accurately predicts the properties of all substances under all conditions. An example of an equation of state correlates densities of gases and liquids to temperatures and pressures, known as the ideal gas law, which is roughly accurate for weakly polar gases at low pressures and moderate temperatures.
All elements in their standard states (diatomic oxygen gas, graphite, etc.) have standard Gibbs free energy change of formation equal to zero, as there is no change involved. Δ f G = Δ f G˚ + RT ln Q f, where Q f is the reaction quotient. At equilibrium, Δ f G = 0, and Q f = K, so the equation becomes Δ f G˚ = −RT ln K,
The propensity for any two substances to form a solid solution is a complicated matter involving the chemical, crystallographic, and quantum properties of the substances in question. Substitutional solid solutions, in accordance with the Hume-Rothery rules, may form if the solute and solvent have: Similar atomic radii (15% or less difference)