Search results
Results from the WOW.Com Content Network
As with any cylindrical projection, the construction can be generalized by positioning the cylinder to be tangent to a great circle of the globe that is not the equator. [1] This projection has prominent use in panoramic photography, where it is usually called the "cylindrical projection". It can present a full 360° panorama and preserves ...
The various cylindrical projections are distinguished from each other solely by their north-south stretching (where latitude is given by φ): The only normal cylindrical projections that preserve area have a north-south compression precisely the reciprocal of east-west stretching (cos φ). This divides north-south distances by a factor equal to ...
Plate carrée: special case having the equator as the standard parallel. 1745 Cassini = Cassini–Soldner: Cylindrical Equidistant César-François Cassini de Thury: Transverse of equirectangular projection; distances along central meridian are conserved. Distances perpendicular to central meridian are preserved. 1569 Mercator = Wright ...
Equirectangular projection of the world; the standard parallel is the equator (plate carrée projection). Equirectangular projection with Tissot's indicatrix of deformation and with the standard parallels lying on the equator True-colour satellite image of Earth in equirectangular projection Height map of planet Earth at 2km per pixel, including oceanic bathymetry information, normalized as 8 ...
The original and most common aspect of the Mercator projection for maps of the Earth is the normal aspect, for which the axis of the cylinder is the Earth's axis of rotation which passes through the North and South poles, and the contact circle is the Earth's equator.
The equator is the circle that is equidistant from the North Pole and South Pole. It divides the Earth into the Northern Hemisphere and the Southern Hemisphere. Of the parallels or circles of latitude, it is the longest, and the only 'great circle' (a circle on the surface of the Earth, centered on Earth's center). All the other parallels are ...
Lambert's projection is the basis for the cylindrical equal-area projection family. Lambert chose the equator as the parallel of no distortion. [2] By multiplying the projection's height by some factor and dividing the width by the same factor, the regions of no distortion can be moved to any desired pair of parallels north and south of the ...
The latitude of the polar circles is + or −90 degrees (which refers to the North and South Pole, respectively) minus the axial tilt (that is, of the Earth's axis of daily rotation relative to the ecliptic, the plane of the Earth's orbit). This predominant, average tilt of the Earth varies slightly, a phenomenon described as nutation.