Search results
Results from the WOW.Com Content Network
A 180° rotation (middle) followed by a positive 90° rotation (left) is equivalent to a single negative 90° (positive 270°) rotation (right). Each of these figures depicts the result of a rotation relative to an upright starting position (bottom left) and includes the matrix representation of the permutation applied by the rotation (center ...
In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly. [2] [3] A rotation of axes is a linear map [4] [5] and a rigid transformation.
However, in navigation, compass headings increase clockwise around the compass face, starting with 0° at the top of the compass (the northerly direction), with 90° to the right (east). A circle defined parametrically in a positive Cartesian plane by the equations x = cos t and y = sin t is traced counterclockwise as the angle t increases in ...
A sphere rotating (spinning) about an axis. Rotation or rotational motion is the circular movement of an object around a central line, known as an axis of rotation.A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersecting anywhere inside or outside the figure at a center of rotation.
Rotation can have a sign (as in the sign of an angle): a clockwise rotation is a negative magnitude so a counterclockwise turn has a positive magnitude. A rotation is different from other types of motions: translations , which have no fixed points, and (hyperplane) reflections , each of them having an entire ( n − 1) -dimensional flat of ...
A celestial object's axial tilt indicates whether the object's rotation is prograde or retrograde. Axial tilt is the angle between an object's rotation axis and a line perpendicular to its orbital plane passing through the object's centre. An object with an axial tilt up to 90 degrees is rotating in the same direction as its primary.
When looking at the source of light, the rotation of the plane of polarization may be either to the right (dextrorotatory or dextrorotary — d-rotary, represented by (+), clockwise), or to the left (levorotatory or levorotary — l-rotary, represented by (−), counter-clockwise) depending on which stereoisomer is dominant.
This operation results in a rotation of the tree in the clockwise direction. The inverse operation is the left rotation, which results in a movement in a counter-clockwise direction (the left rotation shown above is rooted at P). The key to understanding how a rotation functions is to understand its constraints.