Search results
Results from the WOW.Com Content Network
For example, the red and green relations in the diagram are total, but the blue one is not (as it does not relate −1 to any real number), nor is the black one (as it does not relate 2 to any real number). As another example, > is a serial relation over the integers. But it is not a serial relation over the positive integers, because there is ...
For example, the green relation in the diagram is an injection, but the red one is not; the black and the blue relation is not even a function. A surjection: a function that is surjective. For example, the green relation in the diagram is a surjection, but the red one is not. A bijection: a function that is injective and surjective.
The relation not greater than can also be represented by , the symbol for "greater than" bisected by a slash, "not". The same is true for not less than , a ≮ b . {\displaystyle a\nless b.} The notation a ≠ b means that a is not equal to b ; this inequation sometimes is considered a form of strict inequality. [ 4 ]
For example, ≥ is a reflexive relation but > is not. Irreflexive (or strict) for all x ∈ X, not xRx. For example, > is an irreflexive relation, but ≥ is not. Coreflexive for all x, y ∈ X, if xRy then x = y. [7] For example, the relation over the integers in which each odd number is related to itself is a coreflexive relation.
A relation R is called intransitive if it is not transitive, that is, if xRy and yRz, but not xRz, for some x, y, z. In contrast, a relation R is called antitransitive if xRy and yRz always implies that xRz does not hold. For example, the relation defined by xRy if xy is an even number is intransitive, [13] but not antitransitive. [14]
In constructive mathematics, "not empty" and "inhabited" are not equivalent: every inhabited set is not empty but the converse is not always guaranteed; that is, in constructive mathematics, a set that is not empty (where by definition, "is empty" means that the statement () is true) might not have an inhabitant (which is an such that ).
A non-example is the "less than or equal" relation . This is not asymmetric, because reversing for example, produces and both are true. The less-than-or-equal relation is an example of a relation that is neither symmetric nor asymmetric, showing that asymmetry is not the same thing as "not symmetric".
This is an example of an antitransitive relation that does not have any cycles. In particular, by virtue of being antitransitive the relation is not transitive. The game of rock, paper, scissors is an example. The relation over rock, paper, and scissors is "defeats", and the standard rules of the game are such that rock defeats scissors ...