Search results
Results from the WOW.Com Content Network
Functional and not injective. For example, the red relation in the diagram is many-to-one, but the green, blue and black ones are not. Many-to-many [d] Not injective nor functional. For example, the black relation in the diagram is many-to-many, but the red, green and blue ones are not. Uniqueness and totality properties: A function [d]
A relation R is called intransitive if it is not transitive, that is, if xRy and yRz, but not xRz, for some x, y, z. In contrast, a relation R is called antitransitive if xRy and yRz always implies that xRz does not hold. For example, the relation defined by xRy if xy is an even number is intransitive, [13] but not antitransitive. [14] The ...
This is an example of an antitransitive relation that does not have any cycles. In particular, by virtue of being antitransitive the relation is not transitive. The game of rock, paper, scissors is an example. The relation over rock, paper, and scissors is "defeats", and the standard rules of the game are such that rock defeats scissors ...
For example, the relation + + = defines y as an implicit function of x, called the Bring radical, which has as domain and range. The Bring radical cannot be expressed in terms of the four arithmetic operations and n th roots.
A relation can be both symmetric and antisymmetric (in this case, it must be coreflexive), and there are relations which are neither symmetric nor antisymmetric (for example, the "preys on" relation on biological species). Antisymmetry is different from asymmetry: a relation is asymmetric if and only if it is antisymmetric and irreflexive.
When all X i are the same set X, it is simpler to refer to R as an n-ary relation over X, called a homogeneous relation. Without this restriction, R is called a heterogeneous relation. When any of X i is empty, the defining Cartesian product is empty, and the only relation over such a sequence of domains is the empty relation R = ∅.
For example, the red and green binary relations in the diagram are functions, but the blue and black ones are not. An injection: a function that is injective. For example, the green relation in the diagram is an injection, but the red one is not; the black and the blue relation is not even a function. A surjection: a function that is surjective ...
For example, if , then x may or may not equal y, but if <, then x definitely does not equal y, and is less than y (an irreflexive relation). Similarly, using the convention that ⊂ {\displaystyle \subset } is proper subset, if A ⊆ B , {\displaystyle A\subseteq B,} then A may or may not equal B , but if A ⊂ B , {\displaystyle A\subset B ...