Search results
Results from the WOW.Com Content Network
A heterotroph (/ ˈ h ɛ t ər ə ˌ t r oʊ f,-ˌ t r ɒ f /; [1] [2] from Ancient Greek ἕτερος (héteros) 'other' and τροφή (trophḗ) 'nutrition') is an organism that cannot produce its own food, instead taking nutrition from other sources of organic carbon, mainly plant or animal matter. In the food chain, heterotrophs are ...
All eukaryotes except for green plants and algae are unable to manufacture their own food: They obtain food from other organisms. This mode of nutrition is also known as heterotrophic nutrition. All heterotrophs (except blood and gut parasites) have to convert solid food into soluble compounds which are capable of being absorbed (digestion ...
Another example of a multitrophic interaction is a trophic cascade, in which predators help to increase plant growth and prevent overgrazing by suppressing herbivores. Links in a food-web illustrate direct trophic relations among species, but there are also indirect effects that can alter the abundance, distribution, or biomass in the trophic ...
[2] Plant tissues are made up of resilient molecules (e.g. cellulose, lignin, xylan) that decay at a much lower rate than other organic molecules. The activity of detritivores is the reason why we do not see an accumulation of plant litter in nature. [2] [3] Two Adonis blue butterflies lap at a small lump of feces lying on a rock.
Specifically, "trophic mutualism" refers to the transfer of energy and nutrients between two species. This is also sometimes known as resource-to-resource mutualism. Trophic mutualism often occurs between an autotroph and a heterotroph. [1] Although there are many examples of trophic mutualisms, the heterotroph is generally a fungus or bacteria.
This is a list of plant genera that engage in myco-heterotrophic relationships with fungi. It does not include the fungi that are parasitized by these plants. Monocotyledons. Burmanniaceae (Dioscoreales) Afrothismia - 3 species; Apteria - 1 species; Burmannia - 60 species; Campylosiphon - 1 species; Dictyostega - 1 species; Gymnosiphon - 50 species
Photoheterotrophs generate ATP using light, in one of two ways: [6] [7] they use a bacteriochlorophyll-based reaction center, or they use a bacteriorhodopsin.The chlorophyll-based mechanism is similar to that used in photosynthesis, where light excites the molecules in a reaction center and causes a flow of electrons through an electron transport chain (ETS).
The list includes individual plant species identified by their common names as well as larger formal and informal botanical categories which include at least some domesticated individuals. Plants in this list are grouped by the original or primary purpose for which they were domesticated, and subsequently by botanical or culinary categories.