Search results
Results from the WOW.Com Content Network
For example, assuming the Earth is a sphere of radius 6371 km, the surface area of the arctic (north of the Arctic Circle, at latitude 66.56° as of August 2016 [7]) is 2π ⋅ 6371 2 | sin 90° − sin 66.56° | = 21.04 million km 2 (8.12 million sq mi), or 0.5 ⋅ | sin 90° − sin 66.56° | = 4.125% of the total surface area of the Earth.
This gives the expected results of 4 π steradians for the 3D sphere bounded by a surface of area 4πr 2 and 2 π radians for the 2D circle bounded by a circumference of length 2πr. It also gives the slightly less obvious 2 for the 1D case, in which the origin-centered 1D "sphere" is the interval [−r, r] and this is bounded by two limiting ...
If the radius of the sphere is denoted by r and the height of the cap by h, the volume of the spherical sector is =. This may also be written as V = 2 π r 3 3 ( 1 − cos φ ) , {\displaystyle V={\frac {2\pi r^{3}}{3}}(1-\cos \varphi )\,,} where φ is half the cone aperture angle, i.e., φ is the angle between the rim of the cap and the ...
The semi-axis a is the equatorial radius of the spheroid, and c is the distance from centre to pole along the symmetry axis. There are two possible cases: c < a: oblate spheroid; c > a: prolate spheroid; The case of a = c reduces to a sphere.
In geometry, a spherical segment is the solid defined by cutting a sphere or a ball with a pair of parallel planes. It can be thought of as a spherical cap with the top truncated, and so it corresponds to a spherical frustum. The surface of the spherical segment (excluding the bases) is called spherical zone. Geometric parameters for spherical ...
Solid semi-ellipsoid of revolution around z-axis a = the radius of the base circle h = the height of the semi-ellipsoid from the base cicle's center to the edge
A full circle lune, {2} 2π The surface area of a spherical lune is 2θ R 2, where R is the radius of the sphere and θ is the dihedral angle in radians between the two half great circles.
Since the area of a triangle cannot be negative the spherical excess is always positive. It is not necessarily small, because the sum of the angles may attain 5 π (3 π for proper angles). For example, an octant of a sphere is a spherical triangle with three right angles, so that the excess is π /2.