Search results
Results from the WOW.Com Content Network
The Laplace transform can also be used to solve differential equations and is used extensively in mechanical engineering and electrical engineering. The Laplace transform reduces a linear differential equation to an algebraic equation, which can then be solved by the formal rules of algebra.
The following is a list of Laplace transforms for many common functions of a single variable. [1] The Laplace transform is an integral transform that takes a function of a positive real variable t (often time) to a function of a complex variable s (complex angular frequency ).
In mathematics, the Laplace transform is a powerful integral transform used to switch a function from the time domain to the s-domain. The Laplace transform can be used in some cases to solve linear differential equations with given initial conditions. First consider the following property of the Laplace transform:
The Laplace transform is a frequency-domain approach for continuous time signals irrespective of whether the system is stable or unstable. The Laplace transform of a function f ( t ) , defined for all real numbers t ≥ 0 , is the function F ( s ) , which is a unilateral transform defined by
Short-time Fourier transform; Gabor transform; Hankel transform; Hartley transform; Hermite transform; Hilbert transform. Hilbert–Schmidt integral operator; Jacobi transform; Laguerre transform; Laplace transform. Inverse Laplace transform; Two-sided Laplace transform; Inverse two-sided Laplace transform; Laplace–Carson transform; Laplace ...
The state-transition equation is defined as the solution of the linear homogeneous state equation. The linear time-invariant state equation given by = + + (), with state vector x, control vector u, vector w of additive disturbances, and fixed matrices A, B, E can be solved by using either the classical method of solving linear differential equations or the Laplace transform method.
The multidimensional Laplace transform is useful for the solution of boundary value problems. Boundary value problems in two or more variables characterized by partial differential equations can be solved by a direct use of the Laplace transform. [3] The Laplace transform for an M-dimensional case is defined [3] as
The term "transfer function" is also used in the frequency domain analysis of systems using transform methods, such as the Laplace transform; it is the amplitude of the output as a function of the frequency of the input signal.