enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Intermolecular force - Wikipedia

    en.wikipedia.org/wiki/Intermolecular_force

    The attractive force draws molecules closer together and gives a real gas a tendency to occupy a smaller volume than an ideal gas. Which interaction is more important depends on temperature and pressure (see compressibility factor). In a gas, the distances between molecules are generally large, so intermolecular forces have only a small effect.

  3. Volatility (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Volatility_(chemistry)

    An important factor influencing a substance's volatility is the strength of the interactions between its molecules. Attractive forces between molecules are what holds materials together, and materials with stronger intermolecular forces, such as most solids, are typically not very volatile.

  4. Ideal gas - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas

    The ideal gas model tends to fail at lower temperatures or higher pressures, when intermolecular forces and molecular size becomes important. It also fails for most heavy gases, such as many refrigerants, [2] and for gases with strong intermolecular forces, notably water vapor. At high pressures, the volume of a real gas is often considerably ...

  5. Compressibility factor - Wikipedia

    en.wikipedia.org/wiki/Compressibility_factor

    Deviations of the compressibility factor, Z, from unity are due to attractive and repulsive intermolecular forces. At a given temperature and pressure, repulsive forces tend to make the volume larger than for an ideal gas; when these forces dominate Z is greater than unity. When attractive forces dominate, Z is less than unity.

  6. Raoult's law - Wikipedia

    en.wikipedia.org/wiki/Raoult's_law

    Raoult's law (/ ˈ r ɑː uː l z / law) is a relation of physical chemistry, with implications in thermodynamics.Proposed by French chemist François-Marie Raoult in 1887, [1] [2] it states that the partial pressure of each component of an ideal mixture of liquids is equal to the vapor pressure of the pure component (liquid or solid) multiplied by its mole fraction in the mixture.

  7. Vapor pressure - Wikipedia

    en.wikipedia.org/wiki/Vapor_pressure

    The International System of Units (SI) recognizes pressure as a derived unit with the dimension of force per area and designates the pascal (Pa) as its standard unit. [1] One pascal is one newton per square meter (N·m −2 or kg·m −1 ·s −2). Experimental measurement of vapor pressure is a simple procedure for common pressures between 1 ...

  8. Molecular solid - Wikipedia

    en.wikipedia.org/wiki/Molecular_solid

    [9] [10] Hydrogen bonds are amongst the strong intermolecular interactions know other than ion-dipole interactions. [10] For intermolecular hydrogen bonds the δ+ hydrogen interacts with a δ- on an adjacent molecule. Examples of molecular solids that hydrogen bond are water, amino acids, and acetic acid.

  9. London dispersion force - Wikipedia

    en.wikipedia.org/wiki/London_dispersion_force

    Interaction energy of an argon dimer.The long-range section is due to London dispersion forces. London dispersion forces (LDF, also known as dispersion forces, London forces, instantaneous dipole–induced dipole forces, fluctuating induced dipole bonds [1] or loosely as van der Waals forces) are a type of intermolecular force acting between atoms and molecules that are normally electrically ...