Search results
Results from the WOW.Com Content Network
These intermediates then react in an aldol condensation to the allyl aldehyde which the hydrogenation catalyst then reduces to the alcohol. [5] Guerbet Reaction Mechanism. The Cannizzaro reaction is a competing reaction when two aldehyde molecules react by disproportionation to form the corresponding alcohol and carboxylic acid.
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
The reaction usually requires a catalyst, such as concentrated sulfuric acid: R−OH + R'−CO 2 H → R'−CO 2 R + H 2 O. Other types of ester are prepared in a similar manner−for example, tosyl (tosylate) esters are made by reaction of the alcohol with 4-toluenesulfonyl chloride in pyridine.
Under ideal conditions the reaction produces 50% of both the alcohol and the carboxylic acid (it takes two aldehydes to produce one acid and one alcohol). [5] This can be economically viable if the products can be separated and both have a value; the commercial conversion of furfural into furfuryl alcohol and 2-furoic acid is an example of this ...
The chemical equations below summarize the fermentation of sucrose (C 12 H 22 O 11) into ethanol (C 2 H 5 OH). Alcoholic fermentation converts one mole of glucose into two moles of ethanol and two moles of carbon dioxide, producing two moles of ATP in the process. C 6 H 12 O 6 + 2 ADP + 2 P i → 2 C 2 H 5 OH + 2 CO 2 + 2 ATP
Both lower the kinetic barrier and speed up the attainment of chemical equilibrium. In acid catalysis and base catalysis, a chemical reaction is catalyzed by an acid or a base. By Brønsted–Lowry acid–base theory, the acid is the proton (hydrogen ion, H +) donor and the base is the proton acceptor.
Salicyl alcohol is produced by the hydroxymethylation of phenol using formaldehyde: [4] C 6 H 5 OH + CH 2 O → C 6 H 4 OH(CH 2 OH. Air oxidation of salicyl alcohol gives salicylaldehyde. C 6 H 4 OH(CH 2 OH + O → C 6 H 4 OH(CHO) +H 2 O. Chemical sweeteners are formed by acetal formation with e.g. isovanillin (Cmp4). [5]
The reaction stoichiometry implicates the Cr(IV) species "CrO 2 OH −", which comproportionates with the chromic acid to give a Cr(V) oxide, which also functions as an oxidant for the alcohol. [ 6 ] The oxidation of the aldehydes is proposed to proceed via the formation of hemiacetal -like intermediates, which arise from the addition of the O ...