Ad
related to: difference quotient khan academy math- How It Works
Teachers Create Math Content, Game
Designers Make It Fun & Interactive
- Math Practice PreK-8
Learn at your own pace.
Discover math and have fun!
- Start Your Free Trial
First Month Free, No Commitment
Sign Up In Just 60 Seconds
- Math Games and Worksheets
Explore our monster math world
Play 20 free problems daily!
- How It Works
Search results
Results from the WOW.Com Content Network
Difference quotients may also find relevance in applications involving Time discretization, where the width of the time step is used for the value of h. The difference quotient is sometimes also called the Newton quotient [10] [12] [13] [14] (after Isaac Newton) or Fermat's difference quotient (after Pierre de Fermat). [15]
The latter is the difference quotient for g at a, and because g is differentiable at a by assumption, its limit as x tends to a exists and equals g′(a). As for Q(g(x)), notice that Q is defined wherever f is. Furthermore, f is differentiable at g(a) by assumption, so Q is continuous at g(a), by definition of the derivative.
In that way, it is a weaker result than the reciprocal rule proved above. However, in the context of differential algebra, in which there is nothing that is not differentiable and in which derivatives are not defined by limits, it is in this way that the reciprocal rule and the more general quotient rule are established.
Therefore, the true derivative of f at x is the limit of the value of the difference quotient as the secant lines get closer and closer to being a tangent line: ′ = (+) (). Since immediately substituting 0 for h results in 0 0 {\displaystyle {\frac {0}{0}}} indeterminate form , calculating the derivative directly can be unintuitive.
In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. ...
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = () ...
A finite difference is a mathematical expression of the form f (x + b) − f (x + a).If a finite difference is divided by b − a, one gets a difference quotient.The approximation of derivatives by finite differences plays a central role in finite difference methods for the numerical solution of differential equations, especially boundary value problems.
For differentiable functions, the symmetric difference quotient does provide a better numerical approximation of the derivative than the usual difference quotient. [3] The symmetric derivative at a given point equals the arithmetic mean of the left and right derivatives at that point, if the latter two both exist. [1] [2]: 6
Ad
related to: difference quotient khan academy math