enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    The state space or phase space is the geometric space in which the axes are the state variables. The system state can be represented as a vector , the state vector . If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form.

  3. Realization (systems) - Wikipedia

    en.wikipedia.org/wiki/Realization_(systems)

    This state-space realization is called controllable canonical form (also known as phase variable canonical form) because the resulting model is guaranteed to be controllable (i.e., because the control enters a chain of integrators, it has the ability to move every state).

  4. State space (computer science) - Wikipedia

    en.wikipedia.org/wiki/State_space_(computer_science)

    Vacuum World, a shortest path problem with a finite state space. In computer science, a state space is a discrete space representing the set of all possible configurations of a "system". [1] It is a useful abstraction for reasoning about the behavior of a given system and is widely used in the fields of artificial intelligence and game theory.

  5. Multidimensional system - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_system

    A state-space model is a representation of a system in which the effect of all "prior" input values is contained by a state vector. In the case of an m-d system, each dimension has a state vector that contains the effect of prior inputs relative to that dimension. The collection of all such dimensional state vectors at a point constitutes the ...

  6. Subspace identification method - Wikipedia

    en.wikipedia.org/wiki/Subspace_identification_method

    In mathematics, specifically in control theory, subspace identification (SID) aims at identifying linear time invariant (LTI) state space models from input-output data. SID does not require that the user parametrizes the system matrices before solving a parametric optimization problem and, as a consequence, SID methods do not suffer from problems related to local minima that often lead to ...

  7. State-transition matrix - Wikipedia

    en.wikipedia.org/wiki/State-transition_matrix

    The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form ˙ = () + (), =, where () are the states of the system, () is the input signal, () and () are matrix functions, and is the initial condition at .

  8. Nonlinear system identification - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_system...

    A model class that is general enough to capture this situation is the class of stochastic nonlinear state-space models. A state-space model is usually obtained using first principle laws, [16] such as mechanical, electrical, or thermodynamic physical laws, and the parameters to be identified usually have some physical meaning or significance. A ...

  9. Model order reduction - Wikipedia

    en.wikipedia.org/wiki/Model_order_reduction

    By a reduction of the model's associated state space dimension or degrees of freedom, an approximation to the original model is computed which is commonly referred to as a reduced order model. Reduced order models are useful in settings where it is often unfeasible to perform numerical simulations using the complete full order model.