enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    The state space or phase space is the geometric space in which the axes are the state variables. The system state can be represented as a vector , the state vector . If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form.

  3. Mathematical formulation of quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    However, since s is an unphysical parameter, physical states must be left invariant by "s-evolution", and so the physical state space is the kernel of H − E (this requires the use of a rigged Hilbert space and a renormalization of the norm). This is related to the quantization of constrained systems and quantization of gauge theories. It is ...

  4. State space (computer science) - Wikipedia

    en.wikipedia.org/wiki/State_space_(computer_science)

    Vacuum World, a shortest path problem with a finite state space. In computer science, a state space is a discrete space representing the set of all possible configurations of a "system". [1] It is a useful abstraction for reasoning about the behavior of a given system and is widely used in the fields of artificial intelligence and game theory.

  5. State/Space theory - Wikipedia

    en.wikipedia.org/wiki/State/Space_theory

    State/Space theory constitutes a new branch of social and political geography in which the issues of space as a geographic element are considered for their influence on political relationships and outcomes. [1] Leading scholars include Neil Brenner at the Harvard Graduate School of Design, and Bob Jessop at Lancaster University in England ...

  6. Quantum state space - Wikipedia

    en.wikipedia.org/wiki/Quantum_state_space

    In quantum mechanics a state space is a separable complex Hilbert space.The dimension of this Hilbert space depends on the system we choose to describe. [1] [2] The different states that could come out of any particular measurement form an orthonormal basis, so any state vector in the state space can be written as a linear combination of these basis vectors.

  7. Multidimensional system - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_system

    A state-space model is a representation of a system in which the effect of all "prior" input values is contained by a state vector. In the case of an m-d system, each dimension has a state vector that contains the effect of prior inputs relative to that dimension. The collection of all such dimensional state vectors at a point constitutes the ...

  8. Realization (systems) - Wikipedia

    en.wikipedia.org/wiki/Realization_(systems)

    This state-space realization is called controllable canonical form (also known as phase variable canonical form) because the resulting model is guaranteed to be controllable (i.e., because the control enters a chain of integrators, it has the ability to move every state).

  9. Bloch sphere - Wikipedia

    en.wikipedia.org/wiki/Bloch_sphere

    In quantum mechanics and computing, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system , named after the physicist Felix Bloch. [ 1 ] Mathematically each quantum mechanical system is associated with a separable complex Hilbert space H {\displaystyle H} .