Search results
Results from the WOW.Com Content Network
In control engineering and system identification, a state-space representation is a mathematical model of a physical system that uses state variables to track how inputs shape system behavior over time through first-order differential equations or difference equations. These state variables change based on their current values and inputs, while ...
Vacuum World, a shortest path problem with a finite state space. In computer science, a state space is a discrete space representing the set of all possible configurations of a "system". [1] It is a useful abstraction for reasoning about the behavior of a given system and is widely used in the fields of artificial intelligence and game theory.
Discretization is also concerned with the transformation of continuous differential equations into discrete difference equations, suitable for numerical computing.. The following continuous-time state space model
This state-space realization is called controllable canonical form (also known as phase variable canonical form) because the resulting model is guaranteed to be controllable (i.e., because the control enters a chain of integrators, it has the ability to move every state).
A model class that is general enough to capture this situation is the class of stochastic nonlinear state-space models. A state-space model is usually obtained using first principle laws, [ 16 ] such as mechanical, electrical, or thermodynamic physical laws, and the parameters to be identified usually have some physical meaning or significance.
In mathematics, specifically in control theory, subspace identification (SID) aims at identifying linear time invariant (LTI) state space models from input-output data. SID does not require that the user parametrizes the system matrices before solving a parametric optimization problem and, as a consequence, SID methods do not suffer from problems related to local minima that often lead to ...
In information technology and computer science, a system is described as stateful if it is designed to remember preceding events or user interactions; [1] the remembered information is called the state of the system. The set of states a system can occupy is known as its state space. In a discrete system, the state space is countable and often ...
In control theory, given any transfer function, any state-space model that is both controllable and observable and has the same input-output behaviour as the transfer function is said to be a minimal realization of the transfer function. [1] [2] The realization is called "minimal" because it describes the system with the minimum number of ...