Search results
Results from the WOW.Com Content Network
Atmospheric pollutant concentrations expressed as mass per unit volume of atmospheric air (e.g., mg/m 3, μg/m 3, etc.) at sea level will decrease with increasing altitude because the atmospheric pressure decreases with increasing altitude. The change of atmospheric pressure with altitude can be obtained from this equation: [2]
pure (glacial) acetic acid (1.05 g/cm 3) [22] 40 M: pure solid hydrogen (86 g/L) [23] 55.5 M: pure water at 3.984 °C, temperature of its maximum density (1.0000 g/cm 3) [24] 10 2: hM 118.8 M: pure osmium at 20 °C (22.587 g/cm 3) [25] 140.5 M: pure copper at 25 °C (8.93 g/cm 3) 10 3: kM: 10 4: 24 kM: helium in the solar core (150 g/cm 3 ⋅ ...
For example, the conversion factor between a mass fraction of 1 ppb and a mole fraction of 1 ppb is about 4.7 for the greenhouse gas CFC-11 in air (Molar mass of CFC-11 / Mean molar mass of air = 137.368 / 28.97 = 4.74). For volume fraction, the suffix "V" or "v" is sometimes appended to the parts-per notation (e.g. ppmV, ppbv, pptv).
As an example, a measured NO x concentration of 45 ppmv in a dry gas having 5 volume % O 2 is: 45 × ( 20.9 - 3 ) ÷ ( 20.9 - 5 ) = 50.7 ppmv of NO x. when corrected to a dry gas having a specified reference O 2 content of 3 volume %. Note: The measured gas concentration C m must first be corrected to a dry basis before using the above equation.
Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer
m(NaCl) = 2 mol/L × 0.1 L × 58 g/mol = 11.6 g. To create the solution, 11.6 g NaCl is placed in a volumetric flask, dissolved in some water, then followed by the addition of more water until the total volume reaches 100 mL. The density of water is approximately 1000 g/L and its molar mass is 18.02 g/mol (or 1/18.02 = 0.055 mol/g). Therefore ...
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
A solution with 1 g of solute dissolved in a final volume of 100 mL of solution would be labeled as "1%" or "1% m/v" (mass/volume). This is incorrect because the unit "%" can only be used for dimensionless quantities. Instead, the concentration should simply be given in units of g/mL.