Search results
Results from the WOW.Com Content Network
Cyclohexane is a colourless, flammable liquid with a distinctive detergent-like odor, reminiscent of cleaning products (in which it is sometimes used). Cyclohexane is mainly used for the industrial production of adipic acid and caprolactam, which are precursors to nylon. [5] Cyclohexyl (C 6 H 11) is the alkyl substituent of cyclohexane and is ...
In general, only one of the two enantiomers occurs naturally (for example, D-glucose) and can be metabolized by animals or fermented by yeasts. The term "hexose" sometimes is assumed to include deoxyhexoses , such as fucose and rhamnose : compounds with general formula C 6 H 12 O 6− y that can be described as derived from hexoses by ...
For cyclohexane, cyclohexene, and cyclohexadiene, dehydrogenation is the conceptually simplest pathway for aromatization. The activation barrier decreases with the degree of unsaturation. Thus, cyclohexadienes are especially prone to aromatization. Formally, dehydrogenation is a redox process. Dehydrogenative aromatization is the reverse of ...
Regulation of biological processes occurs when any process is modulated in its frequency, rate or extent. Biological processes are regulated by many means; examples include the control of gene expression, protein modification or interaction with a protein or substrate molecule.
Cyclohexanone is produced by the oxidation of cyclohexane in air, typically using cobalt catalysts: [11]. C 6 H 12 + O 2 → (CH 2) 5 CO + H 2 O. This process forms cyclohexanol as a by-product, and this mixture, called "KA Oil" for ketone-alcohol oil, is the main feedstock for the production of adipic acid.
Biotechnology is the research and development in the laboratory using bioinformatics for exploration, extraction, exploitation, and production from any living organisms and any source of biomass by means of biochemical engineering where high value-added products could be planned (reproduced by biosynthesis, for example), forecasted, formulated ...
Examples of biosynthetic pathways include those for the production of amino acids, lipid membrane components, and nucleotides, but also for the production of all classes of biological macromolecules, and of acetyl-coenzyme A, adenosine triphosphate, nicotinamide adenine dinucleotide and other key intermediate and transactional molecules needed ...
Cyclohexene is produced by the partial hydrogenation of benzene, a process developed by the Asahi Chemical company. [4] The main product of the process is cyclohexane because cyclohexene is more easily hydrogenated than benzene. In the laboratory, it can be prepared by dehydration of cyclohexanol. [5] C 6 H 11 OH → C 6 H 10 + H 2 O