enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quadric - Wikipedia

    en.wikipedia.org/wiki/Quadric

    In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas).It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections.

  3. Quadric (algebraic geometry) - Wikipedia

    en.wikipedia.org/wiki/Quadric_(algebraic_geometry)

    The two families of lines on a smooth (split) quadric surface. In mathematics, a quadric or quadric hypersurface is the subspace of N-dimensional space defined by a polynomial equation of degree 2 over a field. Quadrics are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine ...

  4. Adjunction formula - Wikipedia

    en.wikipedia.org/wiki/Adjunction_formula

    Similarly, [3] if C is a smooth curve on the quadric surface P 1 ×P 1 with bidegree (d 1,d 2) (meaning d 1,d 2 are its intersection degrees with a fiber of each projection to P 1), since the canonical class of P 1 ×P 1 has bidegree (−2,−2), the adjunction formula shows that the canonical class of C is the intersection product of divisors ...

  5. Intersection curve - Wikipedia

    en.wikipedia.org/wiki/Intersection_curve

    It is an easy task to determine the intersection points of a line with a quadric (i.e. line-sphere); one only has to solve a quadratic equation. So, any intersection curve of a cone or a cylinder (they are generated by lines) with a quadric consists of intersection points of lines and the quadric (see pictures).

  6. Plücker coordinates - Wikipedia

    en.wikipedia.org/wiki/Plücker_coordinates

    Because they satisfy a quadratic constraint, they establish a one-to-one correspondence between the 4-dimensional space of lines in ⁠ ⁠ and points on a quadric in ⁠ ⁠ (projective 5-space). A predecessor and special case of Grassmann coordinates (which describe k -dimensional linear subspaces, or flats , in an n -dimensional Euclidean ...

  7. Spheroid - Wikipedia

    en.wikipedia.org/wiki/Spheroid

    These formulas are identical in the sense that the formula for S oblate can be used to calculate the surface area of a prolate spheroid and vice versa. However, e then becomes imaginary and can no longer directly be identified with the eccentricity. Both of these results may be cast into many other forms using standard mathematical identities ...

  8. Quadric geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Quadric_geometric_algebra

    Attempting to rotate a QGA quadric surface may result in a different type of quadric surface, or a quadric surface that is rotated and distorted in an unexpected way. Attempting to rotate a QGA point may produce a value that projects as the expected rotated vector, but the produced value is generally not a correct embedding of the rotated vector.

  9. Three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Three-dimensional_space

    Another type of sphere arises from a 4-ball, whose three-dimensional surface is the 3-sphere: points equidistant to the origin of the euclidean space R 4. If a point has coordinates, P ( x , y , z , w ) , then x 2 + y 2 + z 2 + w 2 = 1 characterizes those points on the unit 3-sphere centered at the origin.