enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Confounding - Wikipedia

    en.wikipedia.org/wiki/Confounding

    The confounding variable makes the results of the analysis unreliable. It is quite likely that we are just measuring the fact that highway driving results in better fuel economy than city driving. In statistics terms, the make of the truck is the independent variable, the fuel economy (MPG) is the dependent variable and the amount of city ...

  3. Spurious relationship - Wikipedia

    en.wikipedia.org/wiki/Spurious_relationship

    Graphical model: Whereas a mediator is a factor in the causal chain (top), a confounder is a spurious factor incorrectly implying causation (bottom). In statistics, a spurious relationship or spurious correlation [1] [2] is a mathematical relationship in which two or more events or variables are associated but not causally related, due to either coincidence or the presence of a certain third ...

  4. Propensity score matching - Wikipedia

    en.wikipedia.org/wiki/Propensity_score_matching

    Propensity scores are used to reduce confounding by equating groups based on these covariates. Suppose that we have a binary treatment indicator Z, a response variable r, and background observed covariates X. The propensity score is defined as the conditional probability of treatment given background variables:

  5. Controlling for a variable - Wikipedia

    en.wikipedia.org/wiki/Controlling_for_a_variable

    The regression uses as independent variables not only the one or ones whose effects on the dependent variable are being studied, but also any potential confounding variables, thus avoiding omitted variable bias. "Confounding variables" in this context means other factors that not only influence the dependent variable (the outcome) but also ...

  6. Blocking (statistics) - Wikipedia

    en.wikipedia.org/wiki/Blocking_(statistics)

    To address nuisance variables, researchers can employ different methods such as blocking or randomization. Blocking involves grouping experimental units based on levels of the nuisance variable to control for its influence. Randomization helps distribute the effects of nuisance variables evenly across treatment groups.

  7. Design of experiments - Wikipedia

    en.wikipedia.org/wiki/Design_of_experiments

    Manipulation checks allow investigators to isolate the chief variables to strengthen support that these variables are operating as planned. One of the most important requirements of experimental research designs is the necessity of eliminating the effects of spurious, intervening, and antecedent variables. In the most basic model, cause (X ...

  8. Quasi-experiment - Wikipedia

    en.wikipedia.org/wiki/Quasi-experiment

    The lack of random assignment in the quasi-experimental design method may allow studies to be more feasible, but this also poses many challenges for the investigator in terms of internal validity. This deficiency in randomization makes it harder to rule out confounding variables and introduces new threats to internal validity. [11]

  9. Simpson's paradox - Wikipedia

    en.wikipedia.org/wiki/Simpson's_paradox

    The paradox can be resolved when confounding variables and causal relations are appropriately addressed in the statistical modeling [4] [5] (e.g., through cluster analysis [6]). Simpson's paradox has been used to illustrate the kind of misleading results that the misuse of statistics can generate. [7] [8]