Search results
Results from the WOW.Com Content Network
[5] The most appropriate clustering algorithm for a particular problem often needs to be chosen experimentally, unless there is a mathematical reason to prefer one cluster model over another. An algorithm that is designed for one kind of model will generally fail on a data set that contains a radically different kind of model. [5]
In computer science, data stream clustering is defined as the clustering of data that arrive continuously such as telephone records, multimedia data, financial transactions etc. Data stream clustering is usually studied as a streaming algorithm and the objective is, given a sequence of points, to construct a good clustering of the stream, using a small amount of memory and time.
The standard algorithm for hierarchical agglomerative clustering (HAC) has a time complexity of () and requires () memory, which makes it too slow for even medium data sets. . However, for some special cases, optimal efficient agglomerative methods (of complexity ()) are known: SLINK [2] for single-linkage and CLINK [3] for complete-linkage clusteri
The name was coined by Leonard Kaufman and Peter J. Rousseeuw with their PAM (Partitioning Around Medoids) algorithm. [1] Both the k-means and k-medoids algorithms are partitional (breaking the dataset up into groups) and attempt to minimize the distance between points labeled to be in a cluster and a point designated as the center of that cluster.
DBSCAN optimizes the following loss function: [10] For any possible clustering = {, …,} out of the set of all clusterings , it minimizes the number of clusters under the condition that every pair of points in a cluster is density-reachable, which corresponds to the original two properties "maximality" and "connectivity" of a cluster: [1]
k-means clustering is a popular algorithm used for partitioning data into k clusters, where each cluster is represented by its centroid. However, the pure k -means algorithm is not very flexible, and as such is of limited use (except for when vector quantization as above is actually the desired use case).
The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]
Implementing a different linkage is simply a matter of using a different formula to calculate inter-cluster distances during the distance matrix update steps of the above algorithm. Complete linkage clustering avoids a drawback of the alternative single linkage clustering method - the so-called chaining phenomenon, where clusters formed via ...