Search results
Results from the WOW.Com Content Network
The Schwarzschild radius or the gravitational radius is a physical parameter in the Schwarzschild solution to Einstein's field equations that corresponds to the radius defining the event horizon of a Schwarzschild black hole. It is a characteristic radius associated with any quantity of mass.
The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon.The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.
In Einstein's theory of general relativity, the Schwarzschild metric (also known as the Schwarzschild solution) is an exact solution to the Einstein field equations that describes the gravitational field outside a spherical mass, on the assumption that the electric charge of the mass, angular momentum of the mass, and universal cosmological constant are all zero.
A black hole with the mass of a car would have a diameter of about 10 −24 m and take a nanosecond to evaporate, during which time it would briefly have a luminosity of more than 200 times that of the Sun. Lower-mass black holes are expected to evaporate even faster; for example, a black hole of mass 1 TeV/c 2 would take less than 10 −88 ...
The Kerr–Newman metric describes the spacetime geometry around a mass which is electrically charged and rotating. It is a vacuum solution which generalizes the Kerr metric (which describes an uncharged, rotating mass) by additionally taking into account the energy of an electromagnetic field, making it the most general asymptotically flat and stationary solution of the Einstein–Maxwell ...
A very common astrophysical system in the universe is a black hole surrounded by an accretion disk. The radiation from the general neighborhood, including the accretion disk, is affected by the nature of the central black hole. Assuming Einstein's theory is correct, astrophysical black holes are described by the Kerr metric.
The term Friedmann equation sometimes is used only for the first equation. [3] In these equations, R(t) is the cosmological scale factor, is the Newtonian constant of gravitation, Λ is the cosmological constant with dimension length −2, ρ is the energy density and p is the isotropic pressure.
Bending of waves in a gravitational field. Due to gravity, time passes more slowly at the bottom than at the top, causing the wave-fronts (shown in black) to gradually bend downwards. The green arrow shows the direction of the apparent "gravitational attraction". The orbital equation can be derived from the Hamilton–Jacobi equation. [15]